Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sherry
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
san nguyễn
Xem chi tiết
Akai Haruma
31 tháng 5 2019 lúc 15:42

Lời giải:

\(a+b+c=4;a,b,c>0\Rightarrow 0< a,b,c< 4\)

Ta có:

\(0< a< 4\Rightarrow \sqrt[4]{a}< \sqrt{2}\)

\(\Rightarrow a< \sqrt{2}.\sqrt[4]{a^3}\)

Hoàn toàn tương tự: \(b< \sqrt{2}.\sqrt[4]{b^3}; c< \sqrt{2}.\sqrt[4]{c^3}\)

Cộng theo vế các BĐT vừa thu được ở trên:

\(\Rightarrow a+b+c< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)

\(\Leftrightarrow 4< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)

\(\Leftrightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> 2\sqrt{2}\) (đpcm)

Lê Tài Bảo Châu
Xem chi tiết
Phạm Thành Đông
27 tháng 5 2021 lúc 18:08

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

Khách vãng lai đã xóa
Ngo Anh
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Trần Tuấn Hoàng
25 tháng 5 2022 lúc 21:11
\(a,b,c>0\)

\(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ca}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

Áp dụng BĐT Caushy-Schwarz ta được:

\(\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}}\)

Ta chứng minh rằng:

\(a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

\(\Leftrightarrow\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

Áp dụng BĐT Bunhiacopxki ta được:

\(\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+45abc\right)}\)Ta tiếp tục chứng minh:

\(\dfrac{16}{9}\left(a+b+c\right)^3\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge a^3+b^3+c^3+45abc\)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge\dfrac{16}{9}\left(a^3+b^3+c^3+3.2\sqrt{ab}.2.\sqrt{bc}.2.\sqrt{ca}\right)=\dfrac{16}{9}.\left(a^3+b^3+c^3+24abc\right)\)

Ta chứng minh:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+24abc\right)\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}a^3+\dfrac{16}{9}b^3+\dfrac{16}{9}c^3+\dfrac{16}{9}.24abc\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{3}abc\) (*)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{9}.3\sqrt[3]{a^3b^3c^3}=\dfrac{7}{3}abc\)

\(\Rightarrow\) (*) đúng.

Vậy BĐT đã được chứng minh. Dấu "=" xảy ra khi \(a=b=c>0\).

phan tuấn anh
Xem chi tiết
cao nguyễn thu uyên
31 tháng 12 2015 lúc 17:56

hả?

bài để thi hok kì I đó hả? đúng khó *_*

mk sẽ ghi lại để sau này mk hok

phan tuấn anh
31 tháng 12 2015 lúc 17:58

câu hỏi tương tự ko có đâu

Xem chi tiết
Lương Vũ Minh Hoàng
2 tháng 5 2019 lúc 22:07

ẻgtfd

what ???? cái j vậy , bn có thể vt rõ ra hộ mk đc ko

#mã mã#

Lương Vũ Minh Hoàng
2 tháng 5 2019 lúc 22:14

mk viết cho vui thôi !!!!!!!!

Quyen Jura
Xem chi tiết
Phước Nguyễn
19 tháng 7 2016 lúc 21:39

Ta có:

\(a+b+c=4\)

\(\Rightarrow\)  \(a< 4\)

\(\Rightarrow\)  \(a^4< 4a^3\)  (do  \(a>0\)  nên  \(a^3>0\)  )

Do đó,  \(a^3>\frac{a^4}{4}\)  hay nói cách khác,  \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\)  \(\left(1\right)\)

Từ đó, ta cũng tương tự thiết lập được:   \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\)  \(\left(2\right)\)  và   \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\)  \(\left(3\right)\)

Cộng từng vế các bđt   \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta có:

\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)