Cho a, b, c là các số dương TM a + b + c = 4
CMR: \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Cho a,b,c là các số dương tm: a + b + c = 4. CMR
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Cho a,b,c là các số thực dương thỏa a+b+c=4.CMR:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=4
CMR: \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Lời giải:
Vì \(a+b+c=4;a,b,c>0\Rightarrow 0< a,b,c< 4\)
Ta có:
\(0< a< 4\Rightarrow \sqrt[4]{a}< \sqrt{2}\)
\(\Rightarrow a< \sqrt{2}.\sqrt[4]{a^3}\)
Hoàn toàn tương tự: \(b< \sqrt{2}.\sqrt[4]{b^3}; c< \sqrt{2}.\sqrt[4]{c^3}\)
Cộng theo vế các BĐT vừa thu được ở trên:
\(\Rightarrow a+b+c< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)
\(\Leftrightarrow 4< \sqrt{2}(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3})\)
\(\Leftrightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> 2\sqrt{2}\) (đpcm)
Cho các số thực dương a,b,c thỏa mãn abc=1. CMR:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc-2}}+\frac{1}{\sqrt{c^4-c^3+ac-2}}\le\sqrt{3}\)
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).
Với \(a,b>0\), ta có:
\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).
\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).
\(\Leftrightarrow a^4-a^3-a+1\ge0\).
\(\Leftrightarrow a^4-a^3+1\ge a\).
\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).
\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).
\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).
Chứng minh tương tự (với \(b,c>0\)), ta được:
\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=1\).
Chứng minh tương tự (với \(a,c>0\)), ta được:
\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)
Dấu bằng xảy ra \(\Leftrightarrow c=1\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:
\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).
\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).
Ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).
\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).
\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).
Do đó:
\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).
\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).
Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).
\(+2\)nhé, không phải \(-2\)đâu.
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Cho 3 số dương a,b,c.
CMR : \(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ac}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)
\(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ca}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)
Áp dụng BĐT Caushy-Schwarz ta được:
\(\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}}\)
Ta chứng minh rằng:
\(a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}\le\dfrac{4}{3}\left(a+b+c\right)^2\)
\(\Leftrightarrow\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\dfrac{4}{3}\left(a+b+c\right)^2\)
Áp dụng BĐT Bunhiacopxki ta được:
\(\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+45abc\right)}\)Ta tiếp tục chứng minh:
\(\dfrac{16}{9}\left(a+b+c\right)^3\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge a^3+b^3+c^3+45abc\)
Áp dụng BĐT AM-GM (Caushy) ta được:
\(\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge\dfrac{16}{9}\left(a^3+b^3+c^3+3.2\sqrt{ab}.2.\sqrt{bc}.2.\sqrt{ca}\right)=\dfrac{16}{9}.\left(a^3+b^3+c^3+24abc\right)\)
Ta chứng minh:
\(\dfrac{16}{9}\left(a^3+b^3+c^3+24abc\right)\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{16}{9}a^3+\dfrac{16}{9}b^3+\dfrac{16}{9}c^3+\dfrac{16}{9}.24abc\ge a^3+b^3+c^3+45abc\)
\(\Leftrightarrow\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{3}abc\) (*)
Áp dụng BĐT AM-GM (Caushy) ta được:
\(\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{9}.3\sqrt[3]{a^3b^3c^3}=\dfrac{7}{3}abc\)
\(\Rightarrow\) (*) đúng.
Vậy BĐT đã được chứng minh. Dấu "=" xảy ra khi \(a=b=c>0\).
cho a,b,c là các số dương thỏa mãn a+b+c= 4.Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
hả?
bài để thi hok kì I đó hả? đúng khó *_*
mk sẽ ghi lại để sau này mk hok
Cho a,b ,c là các số dương thỏa mãn a +b +c=4
CMR \(\sqrt[4]{a^3}\)+ \(\sqrt[4]{b^3}\)+ \(\sqrt[4]{c^3}\) > 2\(\sqrt{2}\)
help me
#mã mã#
what ???? cái j vậy , bn có thể vt rõ ra hộ mk đc ko
#mã mã#
Cho a,b,c là các số dương thỏa mãn a+b+c=4.Chứng minh rằng:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Bạn nào biết giúp mình với
Ta có:
\(a+b+c=4\)
\(\Rightarrow\) \(a< 4\)
\(\Rightarrow\) \(a^4< 4a^3\) (do \(a>0\) nên \(a^3>0\) )
Do đó, \(a^3>\frac{a^4}{4}\) hay nói cách khác, \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\) \(\left(1\right)\)
Từ đó, ta cũng tương tự thiết lập được: \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\) \(\left(2\right)\) và \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta có:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)