Cho S = 1 + 2 +2^2+...+2^49
so sanh S với 5^19-1
Cho S = 1/11+1/12+1/13+1/14+115+1/16+1/17+1/18+1/19+1/20
hãy so sanh S và 1/2
cho s =1+2+2^2+2^3+.......+2^9
so sanh s với 5.2^8
S=1+2+22+23+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+22+23+...+29)
S=210-1
=>S<5.2^8
Cho S = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20.
Hay so sanh S va 1/2
Cho S = 1/5+1/6+1/7+......+1/19 . So sánh S với 2
biết là < rồi nhưng mà cách làm thế nào?????
Cho S = 1+2+2^2+......+2^2005
so sanh S với 5.2^2004
2S=2+2^2+....+2^2005
2S-S=(2-2)+(2^2-2^2)+........+2^2005-1
S=2^2005-1<2^2005=2.2^2004<5.2^2004
Vay S<5.2^2004
Bài 1 :
S = 1/2 + 1/3 + 1/4 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 + 49/1
Tính S/P
Bài 2 :
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
Bài 1:
Ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}\)
\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+...+\left(1+\dfrac{48}{2}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
Bài 2:
Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}\right)\)
Nhận xét:
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{2}\)
cho S=1+2+2^2+.......+2^64 so sanh S voi 5.2^32
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
so sanh ; a) s(-9)+(-15)va (-10)+(-14) b) (-19)+(-5)va (-21)+(-2)
\(a,\) Ta có : \(\left(-9\right)+\left(-15\right)=-24\)
\(\left(-10\right)+\left(-14\right)=-24\)
Vì : \(-24=-24\Rightarrow\left(-9\right)+\left(-15\right)=\left(-10\right)+\left(-14\right)\)
\(b,\) Ta có : \(\left(-19\right)+\left(-5\right)=-24\)
\(\left(-21\right)+\left(-2\right)=-23\)
Vì \(-24< -23\Rightarrow\left(-19\right)+\left(-5\right)< \left(-21\right)+\left(-2\right)\)