Tìm x:
a) x(x+2)^2 - (x+1)^2=2
b) (x+2)^3-(x-3)^3
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Bài 1: Tìm x, biết:
a) 4.(x+1)^2+(2x-1)^2-8(x-1)(x+1)=11
b) (x-2)^3-x(x+2)(x-2)+6x(x-3)=0
c) (x-1)(x^2+x+1)-x(x-3)(x+3)=6
Bài 2: Tìm GTNN của:
a) A= x^2-2x+10
b) B= x^2-5x-7
c) C= 3x^2+3x-5
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(C=3x^2+3x-5\)
\(3C=9x^2+9x-15\)
\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)
\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(3x+\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow3C\ge-\frac{69}{4}\)
\(\Leftrightarrow C\ge-\frac{23}{4}\)
Dấu "=" xảy ra khi :
\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy ...
Tìm min
A=(x-3)^2+(x+1)^2
B=(x+a)^2+(x+b)^2+(x+c)^2
C=2(x+1)^2+3(x+2)^2-4(x+3)^2
D=(x+1)(x+3)(x+5)(x+7)+20
E=(x-1)^2+(x+3)^2
A=((x-3)+(x+1))^2>=0
A=(x-2)^2>=0
Dấu bằng xảy ra khi
(x-2)^2=0
x-2=0
x=0+2
x=2
Bài 1.Cho biểu thức
A = (\(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\)) : (1-\(\dfrac{x}{x-1}\))
(a) Rút gọn A.
(b) Tìm x để A > 2.
Bài 2.Cho x+y=a,\(x^2+y^2=b\).Tính \(x^3+y^3\)theo a và b
Bài 2: Tìm x, biết:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
b) (x-3)^3-(x+3)(x^2-3x+9)+3(x+2)(x-2)=2
c) (x+1)^3-(x-1)^3-6(x-1)^2=-10
d) (5x-1)^2-(5x-4)(5x+4)=7
e) (4x-1)^2-(2x+3)^2+5(x+2)+3(x-2)(x+2)=500
Bài 3: Chứng minh đẳng thức:
6) Cho (a+b+c)^2=3(ab+bc+ca)
Chứng minh rằng: a=b=c
7) Cho (a+b+c+1)(a-b-c+1)=(a-b+c-1)(a+b-c-1)
Chứng minh rằng: a=bc
Bài 4: Tìm GTLN, GTNN:
1) Tìm GTNN của:
A= x^2-2x+y^2-4y+2017
B= 2x^2+9y^2-6xy-6x-12y+4046
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
2/
b) ( cái bài này chịu)
c) (x+1)^3-(x-1)^3-6(x-1)^2=-10
(x+1-x+1)\(\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)\(-6\left(x^2-2x+1\right)=-10\)
\(2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+12x-6=-10\)
\(2\left(3x^2+1\right)-6x^2+12x-6=0\)
\(6x^2+2-6x^2+12x-6=-10\)
\(12x=-10+4\)
\(12x=-6=>x=-\frac{1}{2}\)
d) (5x-1)^2-(5x-4)(5x+4)=7
\(25x^2-10x+1-25x^2+16=7\)
-10x = 7 - 17
-10x = -10
x= 1
Câu còn lại bn làm tương tự
3/
a)
Ta có:
(a+b+c)^2=3(ab+bc+ca)
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 3ab - 3bc - 3ac = 0
a^2 + b^2 + c^2 - ac - bc - ab = 0
2a^2 + 2b^2 + 2c^2 - 2ac - 2bc - 2ab = 0
(a2-2ab+b2)+(a2-2ac+c2) + (b2-2bc +c2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 =0
=> a=b=c
Tìm x: a) (x+1)^3-x(x-2)^+x-1=0
b) (x-1)^3 - (x+3)(x^2-3x+9)+3(x^2-4)=2
Tính: (căn 2 x - y^2)
a) Mình ko rõ
b) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+27\right)+3x^2-12=2\)
\(\Leftrightarrow x^3+3x-13-x^3-27=2\)
\(\Leftrightarrow3x-40=2\)
\(\Leftrightarrow3x=42\)
\(\Leftrightarrow x=14\)
\(x\)(\(x\) - 2)? vậy em ha
bài 1:
chứng minh :(a+b)2-(a-b)2=4ab
rút gọn :(a+2)2_(a+2).(a-2)
tìm x: (2x+3)2-4(x-1).(x+1)=49
tính giá trị biểu thức :
Q=(x+3)2+(x+3).(x-3)-2.(x+2).(x-4), cho x=1/2
bài 2
rút gọn biểu thức
A=(4x2+y2).(2x+y).(2x-y)
chứng minh :(7x+1)2-(x+7)2+48(x2-1)
tìm x, biết : 16x2-(4x-5)2=15
tìm giá trị nhỏ nhất : A-x2+2x+3
Em đang cần gấp! giúp với ạ
1. Tìm GTNN
A= |x-3|+|x-5|+|x-7|
B=(x-2)2 + |y-x|+3
C=|x-1|+|x-2|+|x-3|+x-5|
1. Tìm GTLN
a, A=\(\frac{1}{2\left(x-2\right)^2+3}\)
b,B=|x|-|x-2|
bài 1 : tìm x biết
a, ( x - 2 ) : 2 x 3 = 6
b, X : ( hỗn số 3 1/2 x hỗn số 2 2/3 ) = 9/56
c, 1 + 3 + 5 + .....+ ( 2 x X + 1 ) = 625
bài 2 : tìm x biết
a, ( x - 1/2 ) x 5/3 = 7/4 - 1/2
b, 5 x X + X = 42
c, ( x+1 ) + ( x+ 3 ) + ( x + 5 ) + ....+ ( x + 11 ) = 58
bài 3 tìm x biết
a, X - 1,25 x 4 = 7,5
b, X = ( hỗn số 6 3/5 : 6 - 0 , 125 x 8 + hỗn số 2 2/15 x 0,03 ) x 2/11
c, ( X + 1 ) +(X + 2 ) + ( X + 3 ) + ....+(X + 20 ) = 750
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B