Cho hình bình hành ABCD, Kẻ AH; Ck vuông góc với đường chéo BD:
a) CM AHCK là hình bình hành
b) Gọi O là giao điểm của AC và BD. CHứng tỏ H,O,K thẳng hàng.
cho hình bình hành ABCD (AB<BC) BC=8cm, AB=5cm, kẻ BH vuông góc AD có AH=3cm.
tính diện tích của hình bình hành đó
cho hình bình hành ABCD (AB<BC) BC=8cm, AB=5cm, kẻ BH vuông góc AB có AH=3cm.
tính diện tích của hình bình hành đó
Diện tích hbh ABCD là:
SABCD = ( 8 + 5 ) . 3 = 39 ( cm2 )
Đ/s
Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Xét tg DKC và tg BHA có H=K =90 đỘ
DC=AB( hbh ABCD)
ABH=CBK( hbh ABCD, AB//DC)
Suy ra tg DKC=tg BHA( ch-gn)
=> CK=AH( 2 cạnh t/ư)
Ta có : AH vg góc DB
CK vg góc DB
=> CK//AH
Xét tg AKCH có CK//AH(cmt)
CK=AH( cmt)
=> AKCH là hbh( dấu hiệu 3)
Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=BC
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
a) Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK ?
b) Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. Chứng minh rằng ABCD là hình thoi ?
Giải:
a) Hình vẽ:
Xét hai tam giác vuông \(AHD\) và \(AKB\) ta có:
\(AD=AB\) (cạnh hình thoi)
\(\widehat{D}=\widehat{B}\) (hai góc đối hình thoi)
Do đó: \(\Delta AHD=\Delta AKB\) (cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\) (Đpcm)
b) Hình vẽ:
Cách 1: Ta có: \(\Delta AHD=\Delta AKB\left(g.c.g\right)\)
\(\Rightarrow AD=AK\)
Hình bình hành \(ABCD\) có hai cạnh kề bằng nhau nên là hình thoi (Đpcm)
Cách 2: Ta có: \(\Delta AHC=\Delta AKC\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Hình bình hành \(ABCD\) có một đường chéo là phân giác của một góc nên là hình thoi (Đpcm)
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành
Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)
Cho hình bình hành ABCD kẻ DH và BK vuông góc với AC a. Chứng minh Ah=CK b. Chứng minh DHBK là hinh bình hành
a, Vì ABCD là hbh nên AD=BC,AD//BC
Do đó \(\widehat{ADH}=\widehat{CBK}\left(so.le.trong\right)\)
Vì \(\widehat{ADH}=\widehat{CBK};AD=BC;\widehat{AHD}=\widehat{CKB}=90^0\) nên \(\Delta AHD=\Delta CKB\left(ch-gn\right)\)
Do đó AH=CK
b, Vì \(\Delta AHD=\Delta CKB\) nên DH=BK
Mà DH//BK do cùng vuông góc với AC nên DHBK là hbh
a) cho hình thoi ABCD . kẻ hai đường cao AH , AK . Chứng minh rằng AH=AK
b) hình bình hành ABCD có hai đường cao AH,AK bằng nhau . Chứng minh rằng ABCD là hình thoi
xét \(\Delta\)ACK và ABH có
AB=AC(tc hình thoi)
\(\widehat{AKC}=\widehat{AHB}=90^o\)
\(\widehat{B}=\widehat{C}\)
theo trường hợp cạnh huyền góc nhọn
=>AH=AK (2 cạnh tương ứng)
b)
xét \(\Delta\)AKDvà \(\Delta\)AHB
có\(\widehat{AHB}=\widehat{AK\text{D}}=90^o\)
AH=AK(gt)
\(\widehat{B}=\widehat{D}\)(tính chất HBH)
=>AB=AD(2 cạnh tương ứng)
ABCD là hình thoi vì là HBH có 2 cạnh kề bằng nhau
Cho hình bình hành ABCD . Từ A và C kẻ AH và CK vuông góc với BD tại H và K. C/minh: Tứ giác AHCK là hình bình hành.
Xem ở đây nha:
Cho hình bình hành ABCD, Gọi H và K lần lượt là hình chiếu của A và C lên đường chéo BD. a) Chứng minh AHCK là hình bình hành. b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Xét tam giác vuông ADH & tam giác vuông CKB:
AD = BC ( ABCD là hbh)
góc D1= góc B1 ( so le trong)
=> tam giác vuông = tam giác vuông CKB ( cạnh hyền - góc nhọn)
=> AH = CK ( 2 cạnh t/ứng)
Xét tứ giác AHCK :
AH = CK (cmt)
AH // CK ( cùng vuông góc vs BD)
=> AHCK là hình bình hành ( đn)
Cho hình bình hành ABCD, Kẻ AH vuông góc với CD,CK vuông góc với AB.
a) Chứng minh DH = BK, từ đó suy ra CH = AK
b) Chứng minh AHCK là hình bình hành
a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{D}=\widehat{B}\)
Do đó: ΔADH=ΔCBK
Suy ra: DH=BK
Ta có: DH+CH=DC
KB+AK=AB
mà DH=BK
và DC=AB
nên CH=AK
b: Xét tứ giác AHCK có
AK//CH
AK=CH
Do đó: AHCK là hình bình hành