Phân tích đa thức thành nhân tử:
3a^2 - 6ab + 3b^2 - 12c^2
Dấu ^ là số mũ nhé
Phân tích đa thức thành nhân tử 3a2-6ab+3b2-12c2
a) 3a2-6ab+3b2-12c2
=3.(a2-2ab+b2-4c2)
=3.[(a-b)2-4c2]
=3.(a-b-2c)(a-b+2c)
Phân tích đa thức thành nhân tử
\(3a^2-6ab+3b^2-12c^2\)
Giups mik cau này vs mx ơi
\(3a^2-6ab+3b^2-12c^2\)
\(=3a^2-3ab-3ab+3b^2-12c^2\)
\(=\left(3a^2-3ab\right)-\left(3ab-3b^2\right)-12c^2\)
\(=3a\left(a-b\right)-3b\left(a-b\right)-12c^2\)
\(=\left(3a-3b\right)\left(a-b\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
3a2 - 6ab + 3b2 - 12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a - b)2 - (2c)2]
= 3(a - b + 2c)(a - b - 2c)
ủa thế mk sai rồi à Xyz?
Phân tích đa thức sau thành nhân tử :
\(a,x^2-y^2-2x+2y\)
\(b,3a^2-6ab+3b^2-12c^2\)
\(c,x^2-25+y^2+2xy\)
a)\(x^2-y^2-2x+2y=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2=\left(x-1+y-1\right)\left(x-1-y+1\right)\)
\(=\left(x+y-2\right)\left(x-y\right)\)
b)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)\)\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
Phân tích đa thức thành nhân tử
A, 3a^2c^2+bd+3abc+acd
B, a^2c-a^2.d-b^2.d+b^2.c
C, 8x^2+4xy-2ax-ay
D, x^2-y^2-2xy-y^2
E, 3a^2-6ab+3b^2-12c^2
Giup mk nha do j mk can on trc :3
\(A=3a^2c^2+bd+3abc+acd=\left(3a^2c^2+3abc\right)+\left(bd+acd\right)=3ac\left(ac+b\right)+d\left(b+ac\right)\\ =\left(3ac+d\right)\left(ac+b\right)\)
\(B=a^2c-a^2d-b^2d+b^2c=a^2\left(c-d\right)-b^2\left(c-d\right)=\left(a^2-b^2\right)\left(c-d\right)\\=\left(a-b\right)\left(a+b\right)\left(c-d\right)\)
\(C=8x^2+4xy-2ax-ay=\left(8x^2+4xy\right)-\left(2ax+ay\right)=4x\left(2x+y\right)-a\left(2x+y\right)\\ =\left(4x-a\right)\left(2x+y\right)\)
\(E=3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=3\left(a-b\right)^2-12c^2\\ =3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 2x^2 - 2xy - 5x +5y ; b) 8x^2 + 4xy - 2ax - ay
c) x^3 - 4x^2 + 4x ; d) 2xy - x^2 - y^2 + 16
e) x^2 - y^2 - 2yz - z^2; g) 3a^2 - 6ab + 3b^2 - 12c^2
a) 2x^2 - 2xy - 5x +5y
= (2x^2 - 2xy ) - ( 5x- 5 y)
=2x(x-y) - 5(x-y)
=(x- y). (2x- 5)
b)8x2 +4xy-2ax-ay
=(8x2 +4xy) -(2ax+ay)
=4x(2x+y)-a(2x+y)
=(2x+y).(4x-a)
c)=x(x2 -4x +4)
=x(x-2)2
d)=16- (x2 -2xy +y^2)
=4^2-(x-y)^2
=(4-x+y).(4+x-y)
các câu còn lại tg tự
chúc bn hok tốt
1.phân tích đa thức thành nhân tử
x^4+3x^3-9x-9
x^2+6x-y^2+9
x^2+y^2-z^2-9t^2-2xy+6zt
7x^2-7xy-4x+4y
x^4+3x^3-9x-27
3a^2-6ab+3b^2-12c^2
x^2+3cs(2-3cd)-10xy-1+25y^2
Phân tích đa thức sau thành nhân tử :
a) 81x2-6yz-9y2-z2
b) x2y-x3 -9y+9x
c)3a2-6ab+3b2-12c2
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Phân tích đa thức thành nhân tử \(3a^2-6ab-3b^2-12c^2\)
\(3a^2-6ab-3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=\left(\sqrt{3}\left(a-b\right)\right)^2-\left(\sqrt{12}c\right)^2=\left(\sqrt{3}a-\sqrt{3}b-\sqrt{12}c\right)\left(\sqrt{3}a-\sqrt{3}b+\sqrt{12}c\right)\)
Sửa đề :\(3a^2-6ab+3b^2-12c^2\)=\(3\left(a^2-2ab+b^2-4c^2\right)\)
=\(3\left(a-b\right)^2-3\left(2c\right)^2\)=\(3\left(a-b-c\right)\left(a-b+c\right)\)
phân tích đa thức thành nhân tử
a, x^2-y^2-2x+2y
b, 2x+2y-x^2-xy
c, 3a^2-6ab+3b^2-12c^2
d,x^2-25+y^2-2xy
e, a^2+2ab+b^2-ac-bc
f,x^2-2x-4y^2-4y
g,x^2y-x^3-9y+9x
h,x^2(x-1)+16(1-x)
\(a,x^2-y^2-2x+2y=\left(x^2-y^2\right)-\left(2x-2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right).\) \(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
\(c,3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3.\left(\left(a-b\right)^2-\left(2c\right)^2\right)\)
\(=3\left(a-b-2c\right).\left(a-b+2c\right)\)
\(d,x^2-25+y^2-2xy=\left(x^2-2xy+y^2\right)-5^2=\left(x-y\right)^2-5^2\)
\(=\left(x-y+5\right)\left(x-y-5\right)\)
\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)
\(f,x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(h,x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x-1\right)\left(x^2-16\right)=\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)