( 2016 x 2017 + 2018 x 2 + 2015 ) : [ ( 2018 : 2017 - 2017 x 2015 ) + 2016 ]
Tính nhanh nhé!
( 2016 * 2017 + 2018 * 2 + 2015 ) : [ ( 2018 : 2017 - 2017 * 2015 ) + 2016 ]
2018 * 20182017 - 2017 * 20172018
2018 * 20182017 - 2017 * 20182018
Bai nay la bai tinh nhanh nha
Khó quá zậy
Nhưng mình bít kết quả rồi
đó là : -1,002482622
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
A = 2015/2016 + 2016/2017 + 2017/2018 và B = (2015 + 2016 + 2017)/(2016 + 2017 + 2018)
cho \(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)
Tính S = 2018.(\(x^{2018}+y^{2018}\))
Vì \(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)
\(\Rightarrow x=y=1\) hoặc \(x=y=0\)
Với \(x=y=1\)
\(S=2018\left(1^{2018}+1^{2018}\right)\)
\(S=2018.2\)
\(S=4036\)
Với \(x=y=0\)
\(S=2018\left(0^{2018}+0^{2018}\right)\)
\(S=0\)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
A=[(-2015)^2016.(-2016^2017)+(-2016)^2017.(-2015^2016)].(-2017)^2018 tính biểu thức A
Ta có : \(A=\left(\left(-2015\right)^{2016}.-2016^{2017}+\left(-2016\right)^{2017}.-2015^{2016}\right).\left(-2017\right)^{2018}\)
\(=\left(2015^{2016}.-2016^{2017}-2016^{2017}.-2015^{2016}\right).2017^{2018}\)
\(=\left(2015^{2016}-2015^{2016}\right).2017^{2018}.\left(-2016^{2017}\right)\)
\(=0.2017^{2018}.\left(-2016^{2017}\right)=0\)
Giải:
\(A=\left[\left(-2015\right)^{2016}.\left(-2016^{2017}\right)+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}.\left(-2016\right)^{2017}+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\)
\(A=\left[2015^{2016}+\left(-2015^{2016}\right)\right].\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0.\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\)
\(A=0\)
cho \(x,y\ne0\)thỏa mãn\(x^{2015}+x^{2015}=x^{2016}+x^{2016}=x^{2017}+x^{2017}\)
tính \(S=2018.\left(x^{2018}+y^{2018}\right)\)
Tính:
A=2019/2018 - 2018/2017 + 2017/2016 - 2016/2015
B=1/2019 - 1/2018 + 1/2017 - 1/2016
C=1/2017 - 1/2016 + 1/2015 - 1/2014