cho x,y,z>0 ,x2+y2=z2thỏa mãn\(\left[z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]^2\)=8.cmr:x=y
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Chứng minh đẳng thức:
a) \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)=0}\)
b) \(\dfrac{x^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)=1}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{1}{xyz}\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)
cho x,y,z >0 thoả mãn \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
tìm Max: \(P=\dfrac{x^2+y^2+z^2+14xyz}{4\left(x+y+z\right)+15xyz}\)
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
=>\(8xyz=xyz+\sum x+\sum xy+1\)
=>\(\sum x^2+14xyz=\left(\sum x\right)^2+2\sum x+2\)
mặt khác
\(8=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge\dfrac{8}{\sqrt[3]{xyz}}\rightarrow xyz\ge1\)
đặt \(\sum x=a\left(a\ge3\right)\)
khi đó \(P=\dfrac{a^2+2a+2}{4a^2+15xyz}\le\dfrac{a^2+2a+2}{4a^2+15}\)
\(\dfrac{a^2+2a+2}{4a^2+15}=\dfrac{1}{3}-\dfrac{\left(a-3\right)^2}{12a^2+45}\le\dfrac{1}{3}\)
vậy max bằng 1/3 khi x=y=z=1
@Lightning Farron @Akai Haruma @Vũ Tiền Châu
xin lỗi mọi người nhá. dướng mẫu là 4(x+y+z)^2
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
c) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
Cho x, y, z ≠ 0 và x-y-z=0
Tính GTBT B=\(\left(1-\dfrac{z}{x}\right).\left(1-\dfrac{x}{y}\right).\left(1+\dfrac{y}{z}\right)\)
Ta có: \(x-y-z=0\)
\(\Rightarrow x-y=z\)
\(x-z=y\)
\(y+z=x\)
\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)
\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)
\(\Rightarrow B=-1\)
Tính:
a) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
b) \(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-x\right)\left(y-z\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
d) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)
Giúp mình với!!! Mình cần gấp!!! 10 giờ sáng mai cần gấp nha !!!
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Đề bài sai, biểu thức này ko có min
Cho x;y;z>0 và không có 2 số nào đồng thời bằng 0.CMR:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)