Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Sơn Lâm
Xem chi tiết
Đỗ Lê Tú Linh
15 tháng 11 2015 lúc 22:19

mk làm câu a thôi, b dài nhưng tương tự

Gọi a/b=c/d=k =>a=bk ; c=dk

=>\(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2bk+3b\right)^2}{\left(3bk-4b\right)^2}=\frac{\left[b\left(2k+3\right)\right]^2}{\left[b\left(3k-4\right)\right]^2}=\frac{b^2\left(2k+3\right)^2}{b^2\left(3k-4\right)^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(1)

=>\(\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}=\frac{\left(2dk+3d\right)^2}{\left(3dk-4d\right)^2}=\frac{\left[d\left(2k+3\right)\right]^2}{\left[d\left(3k-4\right)\right]^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(2)

Từ (1);(2)=> đpcm

Lê Thị Ngọc Huyền
Xem chi tiết
Qanhh pro
Xem chi tiết
Roxie
11 tháng 11 2019 lúc 13:09

ta cs a/b=c/d=>a/c=b/d

=>2a+3b/2c+3d=3a-4b/3c-4d

=>2a+3b/3a-4b=2c+3d/3c-4d

=>bai toan dc c/m

Cau b tuong tu nha ban

don't forget tick me

Khách vãng lai đã xóa
Vũ Minh Tuấn
11 tháng 11 2019 lúc 18:33

a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)

\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Diệp Thiên Giai
Xem chi tiết
Nguyễn Huy Tú
3 tháng 10 2016 lúc 20:38

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

a) Ta có:

\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

b) Ta có:

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

TXT Channel Funfun
Xem chi tiết
Nguyễn Tấn Tài
18 tháng 7 2018 lúc 21:02

1. Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)

Thay vào 2 vế là sẽ CM được

ʚTrần Hòa Bìnhɞ
18 tháng 7 2018 lúc 21:07

1. Đặt \(\frac{a}{b}=\frac{c}{d}=k>a=bk.c=dk\)

Thay vào 2 vế để chứng minh

Arima Kousei
18 tháng 7 2018 lúc 21:15

1 ) 

Ta có : 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(  Áp dụng t/c DTSBN ) 

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{2b^2}{2d^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\) (  Áp dụng t/c DTSBN )  \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\left(đpcm\right)\)

2 ) 

Ta có : 

\(x+y+2xy=83\)

\(\Rightarrow2\left(x+y+2xy\right)=166\)
\(\Rightarrow2x+2y+4xy+1=167\)

\(\Rightarrow2x\left(2y+1\right)+\left(2y+1\right)=167\)

\(\Rightarrow\left(2x+1\right)\left(2y+1\right)=167\)

Do \(x;y\in Z\)
\(\Leftrightarrow2x+1;2y+1\in Z\)
\(\Leftrightarrow2x+1;2y+1\in\left\{\pm1;\pm167\right\}\)

Ta có bảng sau : 

\(2x+1\)\(1\)\(167\)\(-1\)\(-167\)
\(2y+1\)\(167\)\(1\)\(-167\)\(-1\)
\(x\)\(0\)\(83\)\(-1\)\(-84\)
\(y\)\(83\)\(0\)\(-84\)\(-1\)


Vậy \(\left(x;y\right)\in\left\{\left(0;83\right),\left(83;0\right),\left(-1;-84\right),\left(-84;-1\right)\right\}\)
 

Em Nấm
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 11 2015 lúc 15:52

 

a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)

b/ \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

nhu thong Nguyen
Xem chi tiết
Trần Minh Hoàng
3 tháng 12 2018 lúc 15:21

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)

Đến đây nhìn có vẻ đề sai

shitbo
3 tháng 12 2018 lúc 15:37

\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)

\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)

\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)

Lê Thu Hiền
Xem chi tiết
ST
1 tháng 10 2017 lúc 10:15

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Hoàng
24 tháng 12 2021 lúc 16:37

giúp mình với, mai mình kiểm tra cuối kỉ rồi

Khách vãng lai đã xóa