Tìm P min biết
\(P=\sqrt{\left(x+2017\right)^2}+\sqrt{\left(x+2018\right)^2}\)
Tìm giá trị nhỏ nhất của biểu thức
\(C=\sqrt{\left(x+2017\right)^2}+\sqrt{\left(x+2018\right)^2}+\sqrt{\left(x+2019\right)^2}\)
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018
Tìm GTNN
a) \(y=\sqrt{x^3+2\left(1+\sqrt{x^3+1}\right)}+\sqrt{x^3+2\left(1-\sqrt{x^3+1}\right)}\)
b) \(f\left(x\right)=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
c) \(y=\dfrac{x-2017}{\sqrt{x-2018}}\)
a. ĐKXĐ: \(x\ge-1\)
\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)
\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)
\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)
b.
\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)
c.
\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)
Giúp với huhu!!!
Tìm Min 1) \(P=\frac{1}{2}.\left(x+y+z\right)+\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}+2018\)
2)\(Q=\sqrt{x.\left(x-9\right).\left(x-2\right).\left(x-3\right)}\)
Tìm Max,Min của
A= \(x\left(2018+\sqrt{2020-x^2}\right)\)
giải hệ pt :
\(\hept{\begin{cases}3x^2+6xy+9y^2+\left(x+2y\right)^2\sqrt{x+2y}-3\left(x+2y\right)\sqrt{x+2y}-4\left(x+2y\right)+4\sqrt{x+2y}=0\\\left(\frac{\sqrt[3]{x^2-y^2}}{\sqrt[4]{x}}+\sqrt[4]{\frac{x}{y}}\right)^{2017}+\left(\sqrt[3]{\frac{x}{y}}-\sqrt[4]{\frac{y}{x}}\right)^{2018}=1\end{cases}}\)
Tìm Min P=\(1:\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
Đặt √x = a > 0 thì có
P.2.a(a + 1) - (a - 2)(a - 3) = 0
<=> (2P - 1)x2 + (2P + 5)x - 6 = 0
Để có nghiệm thì:
∆ = (2P + 5)2 - 4.6.(2P - 1) >= 0
Xong rồi đó. Tìm được P >= đó bé
1) Tìm Min \(A=\frac{\left(x+1\right)\left(x+3\right)}{x}\) \(\left(x>0\right)\)
2) Tìm Min \(B=\frac{\left(x-y\right)\left(x-3y\right)}{xy}\) \(\left(x,y>0\right)\)
3) Tìm Min \(P=\frac{x}{x+2}+x\) \(\left(x>2\right)\)
4) Tìm Max \(Q=\sqrt{-3x^2+4x-1}-x^2\)
5) Tìm Max \(M=\frac{\sqrt{x-2018}}{x-1}\) \(\left(x\ge2018\right)\)
tìm min P=\(\sqrt{\left(6-x\right)\left(x+2\right)}-\sqrt{\left(3-x\right)\left(x+1\right)}\)
Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)