-1-\(\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
S=1/2+1/4+1/8+...+1/1024=(1/2)^1+(1/2)^2+(1/2)^3+...+(1/2)^10
2S=1+(1/2)^1+(1/2)^2+...+(1/2)^9
2S-S=1-(1/2)^10
vậy S=1-(1/2)^10
A=\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+....+\(\dfrac{1}{512}\)+\(\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
tính nhanh \(\dfrac{1}{2}\) +\(\dfrac{1}{4}\) +\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\) +.....+\(\dfrac{1}{512}\) +\(\dfrac{1}{1024}\)
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
S=\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)+\(\dfrac{1}{256}\)+\(\dfrac{1}{512}\)+\(\dfrac{1}{1024}\)
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
\(\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)
Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\) có:
\(2A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)
\(\Rightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{1}{2}-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{1024}=\dfrac{1}{1024}\)
Vậy...
Cách của Tuấn Anh Phan Nguyễn đây.
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\right]\)
\(=\dfrac{1}{2}-\left[\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{16}\right)+...+\left(\dfrac{1}{512}-\dfrac{1}{1024}\right)\right]\)\(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)=\dfrac{1}{1024}.\)
Tách nó ra thành 21;22;23..........đến 210đó bạn
tìm số nguyen x: \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
Gọi \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)
VẬy x là một lũy thừa của 2. Đặt x = 2y , ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^y}\)
\(\Rightarrow2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}\)
\(\Rightarrow2A-A=1+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^8}\right)\)
\(=A-\dfrac{1}{2^y}\)
Vậy \(1-\dfrac{1}{2^y}=\dfrac{1023}{1024}\Leftrightarrow\dfrac{1}{2^y}=\dfrac{1}{1024}\Leftrightarrow2^y=1024\Rightarrow x=1024\)
Vậy x = 1024
Tính nhanh :
F=\(\dfrac{2}{6}\)+\(\dfrac{2}{12}+...+\dfrac{2}{240}\)
G= \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
H= \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
Giải:
a) \(F=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{240}\)
\(\Leftrightarrow F=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{15.16}\)
\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{15}-\dfrac{1}{16}\)
\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{16}\)
\(\Leftrightarrow F=\dfrac{7}{16}\)
Vậy ...
b) \(G=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(\Leftrightarrow G=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}\)
\(\Leftrightarrow\dfrac{1}{3}G=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}+\dfrac{1}{3^6}\)
\(\Leftrightarrow\dfrac{2}{3}G=\dfrac{1}{3}-\dfrac{1}{3^6}\)
\(\Leftrightarrow G=\dfrac{\dfrac{1}{3}-\dfrac{1}{3^6}}{\dfrac{2}{3}}\)
\(\Leftrightarrow G=\dfrac{\left(\dfrac{1}{3}-\dfrac{1}{3^6}\right)3}{2}\)
\(\Leftrightarrow G=\dfrac{1-\dfrac{1}{3^5}}{2}\)
\(\Leftrightarrow G=\dfrac{\dfrac{3^5-1}{3^5}}{2}\)
\(\Leftrightarrow G=\dfrac{3^5-1}{3^5.2}\)
Vậy ...
c) Tương tự b)