Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Loan Nguyễn
Xem chi tiết
Nguyễn Trung Thành
16 tháng 8 2017 lúc 16:30

a, A= 4/5 + l 2x-3 l

vì lxl >hoặc= 0

=) l 2x-3 l >hoặc= 0 

=) 4/5 + l 2x-3 l >hoặc= 4/5

=) A đạt GTNN là 4/5 khi 2x-3 = 0  =) x=3/2

b, B = 1/2(x-1)2+ 3

vì x2 > hoặc = 0 =) (x-1)2 > hoặc = 0 

=) 1/2(x-1)2 > hoặc = 0 

=) 1/2(x-1)2+ 3 > hoặc = 3

vậy GTNN  của B=3 khi x-1=0=) x=1 (ở đây ko thể đc là GTLN bn ak vì sau 1/2(x-1)2 là dấu + và  1/2(x-1)2 luôn dương nên khi cộng 3 vào sẽ lớn hơn 3 )

Vũ Thu Hà
Xem chi tiết
Hoàng Phương Minh
Xem chi tiết
Trịnh Hải Đức
14 tháng 7 2020 lúc 8:18

 rl8ph6gr59i5fe5ed7i90u68xw8pce5u

; ouunogrr

Khách vãng lai đã xóa
Ngô Quang Đạt 1
Xem chi tiết
addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Nguyễn Thu Huyền
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

phuonganh do
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 7 2020 lúc 11:16

Sửa đề:

a) \(A=5-\left(2x-1\right)^2\le5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_A=5\Leftrightarrow x=\frac{1}{2}\)

b) \(B=\frac{1}{\left(x-1\right)^2+3}\le\frac{1}{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max_B=\frac{1}{3}\Leftrightarrow x=1\)

Khách vãng lai đã xóa
nguyễn kiều như
Xem chi tiết