Cho hình thang ABCD (AB//CD) . Gọi E và F làn lượt là trung điểm của BD và AC . Gọi G là giao điểm của đường thẳng qua E vuông góc vs AD và đường thẳng qua F vuông góc vs BC . so sánh GD và GC
Cho hình thang ABCD(AB//CD). E,F là trung điểm của BD,AC. Gọi G là giao điểm của đường thẳng đi qua E vuông góc với AD và đường thẳng đi qua F vuông góc với BC. So sánh GD vàGC
Cho hình thang ABCD(AB//CD).Gọi E ,F lần lượt là trung điểm của BD,AC.G là giao điểm của đường thẳng qua E vuông góc với AD và đường thẳng qua F vuông góc với BC.Chứng Minh GD=GC
Gọi K trung điểm BC
--> KF//AD (trung bình của tg DAC)
--> EG vong gcs KF (vì EG vuông góc AD), tương tự EK//BC và FG vuông góc FE
-->G là trực tâm tg EFK
--> GK vuông góc EF
--> GK vuông góc DC vì FE//DC (nối trung điểm 2 dường chéo của hình thang thuộc dường rung bình hình thang)
--> GK trung trực DC
-> tg GDC cân tại G
--> GD = GC (đpcm)
Cho hình thang ABCD (AB//CD). Gọi E, F, K lần lượt là trung điểm của BD, AC, DC. Gọi H là giao điểm của đường thẳng E đi qua E vuông góc với AD và đường thẳng F vuông góc với BC. Chứng minh a)H là trực tâm tam giác EFK b) Tam giác HCD cân
1, Cho tam giác ABC, các đường trung tuyến BE và CD. Gọi M, N theo thứ tự là trung điểm của BD,CE. Gọi I, K theo thứ tự là trung điểm của MN với BE, CD.
CMR: MI=IK=KN
2, Cho hình thang ABCD (AB//CD). Gọi E ,F, H lần lượt là trung điểm của BD, AC, CD. Gọi G là giao điểm của đường thằng qua E vuông góc với ADvaf đường thẳng F vuông góc với BC.
CMR: GC= GD
Cho hình thang ABCD biết E, F lần lượt là trung điểm của BD và AC
1) Chứng minh EF//AB
2) Qua E kẻ đường thẳng vuông góc với AD qua F kẻ đường thẳng vuông góc với BC 2 đường thẳng cắt nhau tại G chứng minh GD=GC
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang ABCD biết E, F lần lượt là trung điểm của BD và AC
1) Chứng minh EF//AB
2) Qua E kẻ đường thẳng vuông góc với AD qua F kẻ đường thẳng vuông góc với BC 2 đường thẳng cắt nhau tại G chứng minh GD=GC
a)bn tự cm đi . dựa theo t/c đg trung bình trong tam giác ấy
b)gọi H là t/đ của DC. H,F lần lượt là t/đ của DC,AC nên HF là đg trung bình của tg ADC=>HF//DA,mà GE//AD(gt)=>GE vg vs HF (1)
c/m tương tự ta đc:GF vg vs EH (2)
từ (1),(2) => G là trực tâm của tg EFH=> GH vg vs EF(3)
mặt khác EF//AB(câu a) và AB//DC(tg ABCD là hthang)=>EF//DC(4)
từ (3),(4)=>GH vg vs DC
xét tg GDC có : GH là đg trung tuyến (vì H là t/đ của DC) và GH vg vs DC (cmt)=>tg GDC cân tại G=>GD=GC
cho hình thang abcd ( ab//cd) . gọi e,f,k lần lượt là trung điểm của bd,ac,dc. gọi h là giao điểm của đường thẳng qua e vuông góc với ad và đường thẳng qua e vuông góc với bc. c/m : a) h là trực tâm của tam giác efk b) tam giác hcd cân
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.
Cho hình thang ABCD (AB // CD). Gọi E, F, K lần lượt là trung điểm của BD, AC, DC. Gọi H là giao điểm của đường thẳng qua E vuông góc với AD và đường thẳng qua F vuông góc với BC.
a) Chứng minh H là trực tâm của tam giác EFK
b) Chứng minh tam giác HCD cân
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14
Cho hình thang ABCD (AB // CD). E, F lần lượt là trung điểm của AD, BC. X là giao điểm của đường thẳng qua E vuông góc với BD và qua F vuông góc với AC. Chứng minh: XD = XC
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang ABCD (AB//CD). Gọi E, F là trung điểm của BD và AC
a) Chứng minh rằng EF//CD.
b) Đường thẳng qua E vuông góc với AD cắt đường thẳng qua F vuông góc với BC tại G. Chứng minh rằng điểm G nằm trên đường trung trực của đoạn thẳng CD.
Gọi M là trung điểm BC => BM=CM
Xét tam giác ABC có:
BM=CM
AE=EC (giả thiết vì E la trung điểm của AC)
Nên: EM là đường trung bình trong tam giác ABC
=>EM//AB và EM=AB/2
Tương tự: Xét tam giác BCD có:
FM là đường trung bình trong tam giác BCD
=>FM//CD và FM=CD/2
Lại có:
FM//CD
mà AB//CD (theo giả thiết ABCD la hthang)
Nên: FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy,EF=FM-EM=(CD-AB)/2