\(^{\left(x-2\right)^{ }5}\) = \(^{\left(x-2\right)^{ }10}\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)voi x∈{-2;-5;-10;-17}
\(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+10\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
Sửa:\(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15
\(\frac{2}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
bằng 13,34590301 ( mình bấm máy tính bạn nhé :) )
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)với x không thuộc{-2;-5;-10;-17}
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+2}-\frac{1}{x-7}=\frac{x}{\left(x+2\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{x+7-x-2}{\left(x+2\right)\left(x+7\right)}=\frac{x}{\left(x+2\right)\left(x+7\right)}\)
\(\Leftrightarrow x=5\)
BT6: Thu gọn về hàng đẳng thức
\(5,\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(6,\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)
\(7,\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(8,-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)
5) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y^2\right)\)
\(=4y^2\)
6) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)
\(=\left(x-5\right)^2-2\left(x-5\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)
\(=\left(x-5-x-5\right)^2\)
\(=\left(-10\right)^2=100\)
7) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x-2\right)^2-2\left(x-2\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left[\left(x-2\right)-\left(x+1\right)\right]^2\)
\(=\left(-3\right)^2=9\)
8) \(-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)
\(=\left(2x-3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x+3y\right)^2\)
\(=\left[\left(2x+3y\right)+\left(2x-3y\right)\right]^2\)
\(=\left(4x\right)^2=16x^2\)
Tìm x:
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Với x \(\ne-2;-5;-10;-17\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15
Tìm x biết: \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Ta có: \(\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{1}{x+2}-\frac{1}{x+5}\); \(\frac{5}{\left(x+5\right)\left(x+10\right)}=\frac{1}{x+5}-\frac{1}{x+10}\)
\(\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{1}{x+10}-\frac{1}{x+17}\);
=> Phương trình tương đương:
\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)<=> \(\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
<=> \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> x=15
Đáp số: x=15
tìm x biết
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+12\right)\left(x+17\right)}\)
biết x không thuộc { -2 , -5 ,-10 , -17 ]
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(pt\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\Leftrightarrow\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow x=15\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+7\right)}\)
\(\Rightarrow\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Tìm x biết :
\(\dfrac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\cdot\left(x+17\right)}\) Vs x \(\notin\){-2;-5;-17;-10}
\(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15