Cho A= 1+4+42+43+...+449
B= 2* 449
Hãy so sánh A và B.
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
So sánh A và B
A=1/41+1/42+1/43+........+1/80
B=7/12
So sánh : A = 1/41 + 1/42 + 1/43 + ................ + 1/80 và B = 7/12 ta được kết quả là : A .......... B
vòng 12 ak , A..<..B
mình làm rồi đugs tick nah
SO SÁNH : A= 59. 43 -16 VỚI B= 43 +59 .42
A > B vì B = 59 . 43 mà A = 59 . 43 - 16. Suy ra A > B.
So sánh:
a) ( 1 + 2 + 3 + 4 ) 2 và 1 3 + 2 3 + 3 3 + 4 3
b) 19 4 và 16 . 18 . 20 . 22
So sánh các phân số :
a)17/26 và 15/29
b)42/47 và 43/45
a) Chứng tỏ rằng: 1/41+1/42+1/43+...+1/80 > 7/12
b) So sánh: A=2008/2009+2009/2010+2010/2011 VÀ B=2008+2009+2010/2009+2010+2011
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
Bài 2 : So sánh các phân số sau bằng cách họp lí nhất :
a) 1/a+1 và 1/ a-1
b) 23/47 và 24/45
c) 12/17 và 7/15
d) 34/43 và 35/42
Giúp em với mai em phải nộp cho cô rồi
a) Ta có : a + 1 > a - 1
=> \(\frac{1}{a+1}\) < \(\frac{1}{a-1}\)
a) \(\frac{1}{a+1}< \frac{1}{a}< \frac{1}{a-1}\Rightarrow\frac{1}{a+1}< \frac{1}{a-1}\)
b) \(\frac{23}{47}< \frac{23}{45}< \frac{24}{45}\Rightarrow\frac{23}{47}< \frac{24}{45}\)
c) \(\frac{12}{17}>\frac{1}{2}>\frac{7}{15}\Rightarrow\frac{12}{17}>\frac{7}{15}\)
d) \(\frac{34}{43}< \frac{35}{43}< \frac{35}{42}\Rightarrow\frac{34}{43}< \frac{35}{42}\)
So sánh A và B: A=(43^2+1)(3^4+1)(3^8+1)(3^16+1); B=3^32-1
So sánh hai số hữu tỉ sau:
a/ 42/-37 và -56/43
b/ 37/67 và -377/677
a) \(\frac{42}{-37}=-\frac{42}{37}=-\frac{37+5}{37}=-1-\frac{5}{37}\) ; \(-\frac{56}{43}=-\frac{43+13}{43}=-1-\frac{13}{43}\)
So sánh \(\frac{5}{37}\) với \(\frac{13}{43}\) thì dễ dàng được \(\frac{5}{37}< \frac{13}{43}\)
Do đó \(\frac{42}{-37}>\frac{-56}{43}\)
b) Dễ thấy \(\frac{37}{67}>0>-\frac{377}{677}\)