Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiền
Xem chi tiết
A Toi Mua
16 tháng 8 2015 lúc 16:16

 


M∈ nửa mặt phẳng bờ AC không chứa B.



-Kẻ tia Cx sao cho tia Cx tạo với đoạn BC một góc bằng góc ACMˆ.

-Trên Cx lấy E sao cho CE=CM(1), ta được hình trên

Dễ dàng CM: BM+MC>MABM+MA>MC (Bạn nào muốn CM thì áp dụng tính chất cạnh và góc trong một tam giác)

Bây giờ ta sẽ chứng minh MA+MCMB

CMBECAMC(c.g.c)

BE=AM(2)

Ta có:

BCEˆ=MCAˆ(ΔBECAMC)(3)

Mà: BCEˆ+ACEˆ=60o(4)

Từ (1), (3), (4):

⇒ΔECM đều

MC=ME(5)

Theo bất đẳng thức trong một tam giác, ta có:

BE+ME>BM(6)

Từ (2), (5), (6):

MA+MCMB

Dấu '=' xảy ra khi;

MA=MC

Lê Phương Anh
14 tháng 7 2018 lúc 14:27

Cho M nằm trong tam giác đều ABC chứng minh 1 trong 3 đoạn thẳng MA ,MB ,MC nhỏ hơn tổng 2 đoạn thẳng còn lại

Lê Quốc Vương
Xem chi tiết
Đời Chán Quá
Xem chi tiết
Ngọc Candy
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:57

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:59

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

Trần Phan Ngọc Lâm
Xem chi tiết
Đỗ Thị Minh Ngọc
26 tháng 3 2022 lúc 15:58

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

hoàng đoan trang
Xem chi tiết
Lương Triều Vỹ
Xem chi tiết