Tìm n để các số sau nguyên tố cùng nhau
a) 9n + 24 và 3n + 4
b) 18n + 3 và 21n + 7
Tìm stn n để các số sau nguyên tố cùng nhau
a, 4n + 3 và 2n + 3
b, 7n + 13 và 2n + 4
c, 2n + 3 và 4n + 8
d, 9n + 24 và 3n + 4
e, 18n + 3 và 21n + 7
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
Tìm n để các số sau là những số nguyên tố cùng nhau:
a, 9n+24 và 3n+4
b, 18n+3 và 21n+7
a)Giả sử ƯCLN(9n+24,3n+4)=d
=>9n+24 chia hết cho d,3n+4 chia hết cho d
=>9n +24 chia hết cho d,9n+12 chia hết cho d
=>(9n+24)-(9n+12) chia hết cho d
=>12 chia hết cho d
=>d=1;2;3;4;6;12
phần còn lại để mai tớ làm tiếp cho hoặc cậu cứ phát triển bài toán theo từng bước như trên nhé!
a/ A=9n+24 và B=3n+4
giả sử k là ước lớn nhất => (9n+24-9n-12) chia hết cho k
12 chia het cho k
hay k=(1,2,3,4,6,12)
k=3,6 B ko chia hết cho 3 loại
với k=2 cần A, họac B không chia hết cho 2 tất nhiên ko chia hết cho 4,12
B=3n+4 không chia hết cho 2
=>họ nghiệm là n=2p+1
đáp số: n=2p+1
b/
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 4n+ 3 và 2n+ 3.
b) 7n+ 13 và 2n+ 4.
c) 9n+ 24 và 3n+ 4.
d) 18n+ 3 và 21n+ 7.
Tìm số tự nhiên n để các số sau là hai số nguyên tố cùng nhau:
a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau
a) 4n+3 và 2n+3 b) 7n+13 vsf 2n+4
c) 9n+24 và 3n +4 d) 18n+3 và 21n+7
a) n = 0
b) n = 0
c) n = 3
d) n = 2
Chúc bạn học tốt!
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a)4n+3 và 2n+3b)7n+13 và 2n+4c)9n+24 và 3n+4d)18n+3 và 21n+7\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)
\(4n+3⋮d\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)
Vay ta co dpcm
c,Đặt \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)
\(9n+24⋮d\)
\(3n+4\Rightarrow9n+12⋮d\)
Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)
Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau
Câu hỏi: Tìm số tự nhiên n để các số sau nguyên tố cùng nhau :
a) 4n + 3 và 2n + 3 ; b) 7n + 13 và 2n + 4 ;
c) 9n + 24 và 3n + 4 ; d) 18n + 3 và 21n + 7.
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau
a,4n+3 và 2n+3 c,9n+24 và 3n+4
b,7n+13 và 2n+4 d,18n+3 và 21n+7
a hỏi bài nha. Giang ơi có tú rồi còn chi nữa
Chứng tỏ các số sau là hai số nguyên tố cùng nhau:
a. 7n+ 10 và 5n+ 7
b.2n+ 3 và 4n + 8
c. 9n+ 24 và 3n + 4
d. 18n + 3 và 21n+ 7
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #
giúp mik vs