a) x^3+6x^2+11x+6
b)x^4+3x^3-7x^2+27x-18
c)x^3-8x^2+x+42
d)x^4+5x^3-7x^2-41x-30
\(x^3+6x^2+11x+6\)
\(x^3-8x^2+x+42\)
\(x^4+3x^3-7x^2-27x-18\)
\(x^4+5x^3-7x^2-41x-30\)
a)\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)\(\left(x-3\right)\left(x-7\right)\left(x+2\right)\)
c)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)\left(x+1\right)\)
d)\(\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
a) x3 + 6x2 + 11x + 6
= (x3 + x2) + (5x2 + 5x) + (6x + 6)
= x2(x + 1) + 5x(x + 1) + 6(x + 1)
= (x2 + 5x + 6)(x + 1)
= (x2 + 2x + 3x + 6)(x + 1)
= [x(x + 2) + 3(x + 2)](x + 1)
= (x + 3)(x + 2)(x + 1)
b) x3 - 8x2 + x + 42
= x3 + 2x2 - 10x2 - 20x + 21x + 42
= x2(x + 2) - 10x(x + 2) + 21(x + 2)
= (x2 - 10x + 21)(x + 2)
= (x2 - 3x - 7x + 21)(x + 2)
=[x(x - 3) - 7(x - 3)](x + 2)
=(x - 7)(x - 3)(x + 2)
c) x4 + 3x3 - 7x2 - 27x - 18
= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18
= x3(x + 1) + 2x2(x + 1) - 9x(x + 1) - 18(x + 1)
= (x3 + 2x2 - 9x - 18)(x + 1)
= [x2(x + 2) - 9(x + 2)](x + 1)
=(x2 - 9)(x + 2)(x + 1)
= (x - 3)(x + 3)(x + 2)(x + 1)
d) x4 + 5x3 - 7x2 - 41x - 30
= x4 + x3 + 4x3 + 4x2 - 11x2 - 11x - 30x - 30
= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) -30(x + 1)
= (x3 + 4x2 - 11x - 30)(x + 1)
= (x3 + 2x2 + 2x2 + 4x - 15x - 30)(x + 1)
= [x2(x + 2) + 2x(x + 2) - 15(x +2)](x + 1)
=(x2 + 2x - 15)(x + 2)(x + 1)
= (x2 - 3x + 5x - 15)(x + 2)(x +1)
= [x(x - 3) + 5(x - 3)](x + 2)(x + 1)
= (x - 3)(x + 5)(x + 2)(x + 1)
NHỚ TIK CHO MIK NHA, đừng có mà đọc suông xong bỏ đi đấy. mik là đầy đủ hơn cái bn ở dưới nên cho mik nhiều tik hơn nhé
Phân tích thành nhân tử:
a) x4+3x3-7x2-27x-18
b) x3-8x2+x+42
c) x4+5x3-7x2-41x-30
a) Ta có: \(x^4+3x^3-7x^2-27x-18\)
\(=x^4-3x^3+6x^3-18x^2+11x^2-33x+6x-18\)
\(=x^3\left(x-3\right)+6x^2\left(x-3\right)+11x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+6x^2+11x+6\right)\)
\(=\left(x-3\right)\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=\left(x-3\right)\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(x^3-8x^2+x+42\)
\(=x^3-7x^2-x^2+7x-6x+42\)
\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)\)
\(=\left(x-7\right)\left(x^2-x-6\right)\)
\(=\left(x-7\right)\left(x-3\right)\left(x+2\right)\)
c) Ta có: \(x^4+5x^3-7x^2-41x-30\)
\(=x^4+5x^3-7x^2-35x-6x-30\)
\(=x^3\left(x+5\right)-7x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x+5\right)\left(x^3-7x-6\right)\)
\(=\left(x+5\right)\left(x^3-x-6x-6\right)\)
\(=\left(x+5\right)\left[x\left(x^2-1\right)-6\left(x+1\right)\right]\)
\(=\left(x+5\right)\left[x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\right]\)
\(=\left(x+5\right)\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
a ) \(==>x^3.\left(x+3\right)-\left(7x^2+27x+18\right)\)
ko xét phần x^3.( x+3 ) nữa mà mik phân tích trong ngoặc nha zo thi ko lm như vậy mà ghi lại phần đó nha
\(7x^2+21x+6x+18\)
\(7x\left(x+3\right)+6\left(x+3\right)\)
\(\left(x+3\right)\left(7x+6\right)\)
==> \(x^3.\left(x+3\right)-\left(x+3\right)\left(7x+6\right)\)
==>\(\left(x+3\right)\left(x^3-7x-6\right)\)
phân tích đa thức thành nhân tử :
1, x3+ 6x2+11x+6
2, x4+3x3-7x2-27x-18
3, x3-8x2+x+42
4, x4+5x3-7x2-41x-30
5, x5+x-1
6, x5-x4-1
6, (x2+x+1).(x2+x+2 ) -12
7, (x-1).(x-2).(x-3).(x-4)+1
làm giúp mik nha , mik đang cần gấp . ai làm đúng mik tick
1, x3+ 6x2+11x+6
= x3 + 2x2 + 4x2 + 8x + 3x + 6
= x2(x + 2) + 4x(x + 2) + 3(x + 2)
= (x + 2)(x2 + 4x + 3)
2, x4+3x3-7x2-27x-18
= x4 + 3x3 - 9x2 + 2x2 - 27x -18
= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)
= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)
= (x2 - 9)(x2 + 3x + 2)
= (x + 3)(x - 3)(x2 + 3x + 2)
3, x3-8x2+x+42
= x3 - 7x2 - x2 + 7x - 6x + 42
= (x3 - 7x2) - (x2 - 7x) - (6x - 42)
= x2(x - 7) - x(x - 7) - 6(x - 7)
= (x - 7)(x2 - x - 6)
4, x4+5x3-7x2-41x-30
= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30
= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)
= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)
= (x3 + 4x2 - 11x - 30)(x + 1)
5, x5+x-1
= x5 - x4 + x3 + x4 - x3 + x2 - x2+ x -1
= x3(x2 - x + 1)+ x2(x2 - x + 1)- (x2 - x + 1)
= (x2 - x + 1)(x3 + x2 - 1)
6, x5-x4-1
= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)
= (x2 - x + 1)(x3 - x - 1)
1, x 3+ 6x 2+11x+6
= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6
= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿
= ﴾x + 2﴿﴾x 2 + 4x + 3﴿
2, x 4+3x 3‐7x 2‐27x‐18
= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18
= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿
= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿
= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿
=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿
3, x 3‐8x 2+x+42
= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42
= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿
= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿
= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿
4, x 4+5x 3‐7x 2‐41x‐30
= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30
= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿
= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿
= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿
5, x 5+x‐1
= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1
= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1
= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1
= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿
a)x^4+3x^3-7x^2-27x-18
b)x^4+5x^3-7x^2-41x-30
c)x^5-x^4+x^3-x^2+x-1
a) x^4+3x^3-7x^2-27x-18 = x^4+3x^3-3x^2-4x^2-9x-12x-6x-18
= (x^4+3x^3)-(3x^2+9x)-(4x^2+12x)-(6x+18)
= x^3*(x+3)-3x*(x+3)-4x*(x+3)-6(x+3)
= ( x^3-3x-4x-6)*(x+3)
Những câu kia chưa tính ra
bai 166 a) 6x^2 -11x +3 phan tich cac da thuc sau thanh nhan tu
b) 2x^+3x-27
c) 2x^2-5xy-3y^2
bai 167 a) x^3+2x-3 b) x^3-7x+6 c)x^3 +5x^2 +8x +4 d) x^3 -9x^2 +6x +16
e)x^3-x^2-x-2 g ) x^3+x^2-x+2 h)x^3 -6x^2-x+30
bai 169 a) 27x^3-27x^2 +18x-4
b)2x^3-x^2+5x+3
c)(x^2-3)^2+16
Dài 166
b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)
Phân tích thành nhân tử :
a, \(x^4+3x^3-7x^2-27x-18\)
b, \(x^4+5x^3-7x^2-41x-30\)
c, \(x^6-14x^4+49x^2-36\)
a) \(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+3x^3+2x^2\right)-\left(9x^2-27x-18\right)\)
\(=x^2\left(x^2+3x+2\right)-9\left(x^2+3x+2\right)=\left(x^2+x+2x+2\right)\left(x^2-9\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
b) \(x^4+5x^3-7x^2-41x-30\)
\(=\left(x^4+2x^3-15x^2\right)+\left(3x^3+6x^2-45x\right)+\left(2x^2+4x-30\right)\)
\(=x^2\left(x^2+2x-15\right)+3x\left(x^2+2x-15\right)+2\left(x^2+2x-15\right)\)
\(=\left(x^2+2x-15\right)\left(x^2+3x+2\right)=\left(x^2+5x-3x-15\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c) \(x^6-14x^4+49x^2-36\)
\(=\left(x^6-9x^4\right)+\left(-5x^4+45x^2\right)+\left(4x^2-36\right)\)
\(=x^4\left(x^2-9\right)-5x^2\left(x^2-9\right)+4\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(x^4-5x^2+4\right)=\left(x^2-9\right)\left(x^4-4x^2-x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
Bài 1: a) 6x2-11x+3
b) 2x2+3x-27
c) x3+2x-3
d) x3-7x+6
e)x3+5x2+8x+4
f) 27x3-27x2+18x-4
dùng hornơ và bơdu
e, \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
d, \(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
phân tích đa thức thành nhân tử
x^4+3x^3 -7x^2 -18
x^3-8x^2 +x +42
x^4 =5x^3 -7x^2 -41x -36
Câu 1: Đa thức không phân tích được thành nhân tử
Câu 2:
\(x^3-8x^2+x+42\)
\(=x^3+2x^2-10x^2-20x+21x+42\)
\(=x^2(x+2)-10x(x+2)+21(x+2)\)
\(=(x^2-10x+21)(x+2)\)
\(=(x^2-3x-7x+21)(x+2)\)
\(=[x(x-3)-7(x-3)](x+2)=(x-3)(x-7)(x+2)\)
Câu 3:
Đa thức không phân tích được thành nhân tử dù sửa dấu = thành cộng hoặc trừ.
Phân tích đa thức thành nhân tử
a, x^3 - 8x^2 +x + 42
b, x^4 + 5x^3 - 7x^2 - 41x - 30