a) (x^2+2x+1)(x+1)
b) (x^3-x^2+2x-1)(5-x)
c) (x-5)(x^3-x^2+2x-1)
Tính
a.1/2xy^2 (x^2-6y)
b.(x-2)(2x+3)
c.(x+5)(x^2-2x +3)
d.(2x-3)(x^2-2Tính
a.1/2xy^2 (x^2-6y)
b.(x-2)(2x+3)
c.(x+5)(x^2-2x +3)
d.(2x-3)(x^2-2x+5)
e.(x-2y)(x+2y)
f.(2x-1)(4x^2+2x+1)
g.(2x-1)(4x^2-2x+1)x+5)
e.(x-2y)(x+2y)
f.(2x-1)(4x^2+2x+1)
g.(2x-1)(4x^2-2x+1)
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x
a) (2x-5) mũ 2 - (2x+3).(2x-3) = 10
b) (4x-1).(x+2) - (2x+3) mũ 2 - 5.(x-1) = 9
c) (x+1) mũ 3 - (x-1) mũ 3 - 2 = 6
d) (x+2).(x mũ 2 - 2x+4 ) - (x+1).(x mũ 2 - x+1) - 3.(-x-2) = 5
a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)
\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)
b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)
\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)
1,tìm x a) (x+3)^2-(x-2)^3=(x+5)(x^2-5x+25)-108 b) 4(x^2+2x-1)^2-(2x^2-3)^2=0 c) (2x-1)(4x^2+2x+1)-(x-2)^2=-x(x-6)-5
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
Mọi người giúp tới gấp nhé:
1. Tìm x, biết:
a/ 3(2x - 3) + 2(2 - x) = -3
b/ 2x(x2 - 2) + x2(1 - 2x) - x2 = -12
2. Tìm x, biết:
a/ 3x(2x + 3) - (2x + 5)(3x - 2) = 8
b/ 4x(x - 1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)
c/ 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
d/ 3(2x - 1)(3x - 1) - (2x - 3)(9x -1) - 3 = -3
e/ (3x - 1)(2x + 7) - (x + 1)(6x - 5) = (x + 2) - (x - 5)
f/ 3xy(x + y) - (x + y)(x2 + y2 + 2xy) + y3 = 27
3. Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào x:
a/ A = 2x(x - 1) - x(2x + 1) - (3 - 3x)
b/ B = 2x(x - 3) - (2x - 2)(x - 2)
c/ C = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
d/ D = (2x + 11)(3x - 5) - (2x + 3)(3x + 7)
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
Bài 1:
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(6x-9+4-2x=-3\)
\(4x=-2\)
\(x=-\frac{1}{2}\)
b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)
\(2x^3-4x+x^2-2x^3-x^2=-12\)
\(-4x=-12\)
\(x=\frac{1}{3}\)
Bài 2:
a/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(6x^2+9x-6x^2-15x+4x+10=8\)
\(-2x=8\)
\(x=-4\)
b/ \(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)
\(4x^2-4x-3x^2+15-x^2=-7\)
\(-4x=-22\)
\(x=\frac{11}{2}\)
c/ \(2\left(3x-1\right)\left(2x+5\right)-6\left(2x-1\right)\left(x+2\right)=-6\)
\(6x-2\left(2x+5\right)-12x+6\left(x+2\right)=-6\)
\(6x-4x-10-12x+6x+12=-6\)
\(-4x=-8\)
\(x=2\)
Phân tích các đa thức sau thành nhân tử
a, (x-3)(x-1)-3(x-3)
b, (x-1)(2x+1)+3(x-1)(x+2)(2x+1)
c, (6x+3)-(2x-5)(2x+1)
d, (x-5)^2+(x+5)(x-5)-(5-x)(2x+1)
e, (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)
\(=\left(x-3\right)\left(x-1-3\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)
\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)
\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
\(\left(x-5\right)^2+\left(5+x\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\)
\(=\left(x-5\right)^2+\left(5+x\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\)
\(=\left(x-5\right)(x-5+5+x+2x+1)\)
\(=\left(x-5\right)\left(4x+1\right)\)
Còn lại bạn tự làm nhá
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
Rút gọn biểu thức sau:
a. A= ( 5- x ). (x + 5) - 2.( x - 1). ( x - 3) - 3.( x - 2)2
b. B= ( 3 - 2x).( x - 2) + ( 2x - 5)2 - ( x - 4)
c. C= ( x - 4). ( x - 2) - 3.( x - 2) . ( 3 - 2x) - ( 2x + 1)2
d D= 2.( x - 1)2 - 3.( x - 1). ( x + 2) - ( 2x + 1)2
a)
A= ( 5- x ). (x + 5) - 2.( x - 1). ( x - 3) - 3.( x - 2)2
= 25 - x2 - 2(x2- 3x - x + 3) - 3(x2 - 4x + 4)
= 25 - x2 - 2x2 + 6x + 2x - 6 - 3x2 + 12x - 12
= 7 - 6x2 + 20x
câu b kết quả là:
-14x - 27 +2x2
a) \(A=\left(5-x\right)\left(x+5\right)-2\left(x-1\right)\left(x-3\right)-3\left(x-2\right)^2\)
\(=\left(5-x\right)\left(5+x\right)-\left(2x-2\right)\left(x-3\right)-3\left(x^2-2.2x+2^2\right)\)
\(=\left(5^2-x^2\right)-\left[2x\left(x-3\right)-2\left(x-3\right)\right]-3\left(x^2-4x+4\right)\)
\(=25-x^2-\left[\left(2x^2-6x\right)-\left(2x-6\right)\right]-3x^2+12x-12\)
\(=25-x^2-\left(2x^2-6x-2x+6\right)-3x^2+12x-12\)
\(=25-x^2-2x^2+6x+2x-6-3x^2+12x-12\)
\(=7+20x-6x^2\)
b/ \(B=\left(3-2x\right)\left(x-2\right)+\left(2x-5\right)^2-\left(x-4\right)\)
\(=3\left(x-2\right)-2x\left(x-2\right)+\left[\left(2x\right)^2-2.2x.5+5^2\right]-x+4\)
\(=3x-6-2x^2+4x+4x^2-20x+25-x+4\)
\(=23-14x+2x^2\)
c/ \(C=\left(x-4\right)\left(x-2\right)-3\left(x-2\right)\left(3-2x\right)-\left(2x+1\right)^2\)
\(=x\left(x-2\right)-4\left(x-2\right)-\left(3x-6\right)\left(3-2x\right)-\left[\left(2x\right)^2+2.2x.1+1^2\right]\)
\(=x^2-2x-4x+8-\left[3x\left(3-2x\right)-6\left(3-2x\right)\right]-4x^2-4x-1\)
\(=x^2-2x-4x+8-\left(9x-6x^2-18+12x\right)-4x^2-4x-1\)
\(=x^2-2x-4x+8-9x+6x^2+18-12x-4x^2-4x-1\)
\(=25-31x+3x^2\)
d/ \(D=2\left(x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(2x+1\right)^2\)
\(=2.\left(x^2-2x+1\right)-\left(3x-3\right)\left(x+2\right)-\left[\left(2x\right)^2+2.2x+1\right]\)
\(=2x^2-4x+2-\left[3x\left(x+2\right)-3\left(x+2\right)\right]-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-\left(3x^2+6x-3x-6\right)-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-3x^2-6x+3x+6-4x^2-4x-1\)
\(=7-11x-5x^2\)
P/s: Ko chắc ạ!
Tìm x
a) (12x-5)(3x-1)-(18x-1)(2x+3)=5
b) (x+2)(x-3)-(x-2)(x+5)=2(x+3)
c) (2x+3)(2x-1)-(2x+5)-(2x-3)=12
Tìm x biết:
a)(x+3)^2+(x-2)(x+2)-2(x+1)=7
b)x(2x-1)-(x-2)(2x+3)=0
c)(x-1)(x+2)-x-2=0
d)x[(3x+2)+(x+1)^2-(2x-5)(2x+5)]=0
đ) 2x^2-7x+5=0
e) (2x+3)(x-5)=(2x+1)(2×+3)
chúc bạn học giỏi
a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)
\(\Leftrightarrow2x^2+4x-4=0\)
\(\Leftrightarrow x^2+2x-2=0\)
\(\Leftrightarrow x^2+2x+1-3=0\)
\(\Leftrightarrow\left(x+1\right)^2=3\)
hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)
b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)
\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)
=>6=0(vô lý)
c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
=>x=-2 hoặc x=2
đ: \(\Rightarrow2x^2-2x-5x+5=0\)
=>(x-1)(2x-5)=0
=>x=1 hoặc x=5/2