Tìm x thuộc Q : 5x + 5x+2 = 650
Tìm x ∈ N biết:
a, x - 3 : 2 = 5 14 : 5 12
b, 30 : x - 7 = 15 19 : 15 18
c, x 70 = x
d, 2 x + 1 3 = 9 . 81
e, 5 x + 5 x + 2 = 650
f, 4 x - 1 2 = 25 . 9
a, x - 3 : 2 = 5 14 : 5 12
=> x - 3 : 2 = 5 2
=> x - 3 : 2 = 25
=> x – 3 = 25
=> x = 53
b, 30 : x - 7 = 15 19 : 15 18
=> 30 : x - 7 = 15
=> x – 7 = 2
=> x = 9
c, x 70 = x
=> x 70 - x = 0
=> x ( x 69 - 1 ) = 0
=>
d, 2 x + 1 3 = 9 . 81
=> 2 x + 1 3 = 9 3
=> 2x + 1 = 9
=> x = 4
e, 5 x + 5 x + 2 = 650
=> 5 x 1 + 5 2 = 650
=> 5 x . 26 = 650
=> 5 x = 25
=> x = 2
f, 4 x - 1 2 = 25 . 9
=> 4 x - 1 2 = 5 2 . 3 2
=> 4 x - 1 2 = 15 2
=> 4x – 1 = 15
=> x = 4
Tìm x ∈ N biết:
a) x - 3 : 2 = 5 14 : 5 12 . b) 30 : x - 7 = 15 19 : 15 18 . c) x 70 = x .
d) 2 x + 1 3 = 9 . 81 . e) 5 x + 5 x + 2 = 650 . f) 4 x - 1 2 = 25 . 9
Bài 2: Tìm x, biết
a) | b) |
c) | d) |
e) (x – )3 = | g) 5x + 5 x + 2 = 650 |
Số tự nhiên x được cho bởi: 5 x + 5 x + 2 = 650 . Giá trị của x là
A. 1
B. 2
C. 3
D. 4
5x + 5x +2 = 650 ét ô ét :'((
TK :
5x + 5x +2 = 650
5x + 5x . 52 = 650
5x .( 1 +25 ) = 650
5x .26 = 650
5x = 650 / 26 =25
5x = 52
nên x=2
Bài 1:Rút gọn
a)219×273+15×49×9469×210+1210
b)(−12 )3−(34 )3×(−2)22×(−1)5+(34 )2−38
c)45×94−2×64219×38+68×20
Bài 2:Tìm x
a)5x+5x+2=650
b)
dạ nhờ thầy cô giải giúp con bài này với ạ
a) 52 x 3x = 575
b) 5 x 2x - 72 = 31
c)5x + 5x+2 =650
a) \(5^2\cdot3^x=575\)
\(\Rightarrow3^x=\dfrac{575}{5^2}\)
\(\Rightarrow3^x=\dfrac{575}{25}\)
\(\Rightarrow3^x=23\)
Xem lại đề
b) \(5\cdot2^x-7^2=31\)
\(\Rightarrow5\cdot2^x=31+49\)
\(\Rightarrow5\cdot2^x=80\)
\(\Rightarrow2^x=\dfrac{80}{5}\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
c) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x\cdot\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=\dfrac{650}{26}\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
a, 52 x \(3^x\) = 575
3\(^x\) = 575 : 52
3\(^x\) = 23
nếu \(x\) ≤ 0 ta có 3\(^x\) ≤ 1 < 23 (loại) (1)
Nếu \(x\) ≥ 1 ⇒ 3\(^x\) ⋮ 3 \(\ne\) 23 vì 23 không chia hết cho 3 (2)
kết hợp (1) và(2) ta thấy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận: \(x\in\varnothing\)
Gọi x 1 là giá trị thỏa mãn 5 x + 5 x + 2 = 650 và x 2 là giá trị thỏa mãn 240 : x - 5 = 2 2 . 5 2 - 20 . Tính x 1 + x 2
A. 14
B. 10
C. 16
D. 6
A=\(\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
a)rút gọn A
b)tìm x để A=-4
c)tính giá trị của A khi x2+4x+5
d)tìm x thuộc Z để A nhận giá trị nguyên
a)\(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\left(ĐK:x\ne0;-5\right)\)
\(\Leftrightarrow A=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x+5}{5}\)
b)Để A=-4 \(\Leftrightarrow\frac{x+5}{5}=-4\)
\(\Leftrightarrow x+5=-20\)
\(\Leftrightarrow x=-25\)
a).....
\(=\frac{x^2}{5\left(x+5\right)}+\frac{2x-10}{x}+\frac{50+5x}{x\left(x+5\right)}\) MTC= 5x (x+5) ĐK\(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(=\frac{x^2.x}{5x\left(x+5\right)}+\frac{5.\left(2x-10\right).\left(x+5\right)}{5x\left(x+5\right)}+\frac{5.\left(50+5x\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+\left(10x-50\right).\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+50x-50x-250+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
b) A=-4
=>\(\frac{x+5}{5}=-4\)
=> x = -25
c)
d) Để A đạt gt nguyên thì 5\(⋮\)x+5
=> \(\left(x+5\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
*x+5=1 => x=-4 \(\in Z\)
*x+5=-1 => x=-6\(\in Z\)
*x+5=5 => x=0\(\in Z\)
*x+5=-5 => x=-10\(\in Z\)
Vậy...........
Tìm x thuộc Z để A thuộc Z rồi tìm A khi:
A=\(\frac{x^3-5x^2+9x-2}{x-3}\)
thực hiện phép chia đa thức ta có:
\(x^3-5x^2+9x-2=\left(x^2-2x+3\right)\left(x-3\right)+7\)
=> \(A=x^2-2x+3+\frac{7}{x-3}\)
Với x thuộc Z để A thuộc Z thì \(\frac{7}{x-3}\in Z\)<=> \(7⋮\left(x-3\right)\)<=> x-3 thuộc Ư(7). Em tự làm tiếp nhé!