Cho tam giác ABC các điểm D,E nằm lần lượt trên các cạnh AC , AB sao cho BD = CD và BE = 2AE . Gọi M là giao điểm của AD và CE . chứng minh M là trung điểm AD .
Cho tam giác ABC. Các điểm D, E lần lượt trên các cạnh BC, AB sao cho BD = CD, BE = 2AE. Gọi M là giao điểm của AD và CE. Chứng minh rằng MA = MD. help me mik cần gấp lắm ạ! nhanh giúp r mình k cho
Gọi K là tđ EB
Xét tg ECB ta có :
+ EK=KB (K tđ EB)
+DC = DB (gt)
=> DK là đường tb tg ECB => EC//DK => ME//DK
Xét tg ADK ta có :
Vì EM//DK
AE = EK (=1/3 AB )
=> AM=MD ( dl1) => dpcm
Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD;
b) ∆ B M D = ∆ C M E ;
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh MN // AC //BD.
bài 1: cho tam giác ABC các đường trung tuyến BD, CE. gọi M,N theo thứ tự là trung điểm của BE,CD. gọi I,K theo thứ tự là giao điểm của MN với BD,CE chứng minh rằng MI = IK = KN
bài 2: cho tam giác ABC, M là trung điểm của BC. trên cạnh AB lấy D,E sao cho AD = DE = EB. gọi I là giao điểm của CD và AM. chứng minh I là trung điểm của AM
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.Chứng minh: a) Các hình chiếu của BD và CE trên BC bằng nhau. b) BE = CD. c)tam giác BMD = tam giác CME d) AM là tia phân giác của góc BAC. e)BE nhỏ hơn BC + DE chia 2
a: Kẻ DH và EK lần lượt vuông góc với BC
=>DH//EK
H,B lần lượt là hình chiếu của D,B trên BC
=>HB là hình chiếu của DB trên BC
K,C lần lượt là hình chiếu của E,C trên BC
=>KC là hình chiếu của EC trên BC
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=EC
góc DBH=góc ECK
=>ΔDHB=ΔEKC
=>BH=KC và DH=EK
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
c: Xét ΔMDB và ΔMEC có
góc MDB=góc MEC
DB=EC
góc MBD=góc MCE
=>ΔMDB=ΔMEC
d: Xét ΔABM và ΔACM có
AM chung
MB=MC
AB=AC
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
Cho tam giác ABC , định trên cạnh AB và AC các điểm D và E sao cho BD = CE . Gọi M là trung điểm của DE , N là trung điểm của BC . I và F lần lượt là giao điểm của MN với AC và AB . Chứng minh tam giác AIF cân
. Cho tam giác ABC cân ở A , trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD= AE ; BD cắt CE tại G . Chứng minh rằng:
a) BD =CE;
b) tam giác GDE cân;
c) Gọi M là trung điểm của BC . Chứng minh ba điểm A ,G ,M thẳng hàng.
d) Cho AB=13 cm, MB=5 cm . Tính độ dài đoạn AM
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
Cho tam giác ABC. Trên các cạnh AB,AC lấy D,E sao cho BD=CE. Gọi M,N,I,K lần lượt là giao điểm của DE,BC,BE,CD.
a, Tứ giác MINK là hình gì ? vì sao ?
Gọi G,H lần lượt là giao điểm của IK với AB,AC. chứng minh tam giác AGH cân
Cho tam giác ABC có góc A = góc B. Trên các cạnh CB, CA lần lượt lấy các điểm D, E sao cho CD = CE. Gọi F là giao điểm của AD và BE. Chứng minh FA = FB".
Xét ΔCAB có góc CAB=góc CBA
nên ΔCAB cân tại C
=>CA=CB
CE+EA=CA
CD+DB=CB
mà CD=CE và CA=CB
nên EA=DB
Xét ΔEAB và ΔDBA có
EA=DB
góc EAB=góc DBA
BA chung
Do đó: ΔEAB=ΔDBA
=>góc EBA=góc DAB
=>góc FAB=góc FBA
=>FA=FB
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3