a. Cho a = \(\frac{10^n-1}{10^{12}-1}\); B=\(\frac{10^{12}+1}{10^{12}+1}\) .So sánh A và B
b. Chứng minh rằng số có 6 chữ số abcdeg \(⋮\)7 nếu (abc-deg) \(⋮\)7
a) cho a,b,n thuoc N* hay so sanh \(\frac{a+n}{b+n}va\frac{a}{b}\)
b) cho A=\(\frac{10^{11}-1}{10^{12}-1}\); B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
1)a)Cho a,b,n thuộc N*.Hãy so sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11+1}}\).So sánh A và B.
a)Cho a,b,n thuoc N*.Hay so sanh$\frac{a+n}{b+n}$a+nb+n va $\frac{a}{b}$ab
b)Cho A=$\frac{10^{11}-1}{10^{12}-1}$1011−11012−1
B=$\frac{10^{10}+1}{10^{11}+1}$1010+11011+1
Hay so sanh A va B
Xin lỗi mink mới học lớp 5 thôi không giúp bạn được nhưng mong bạn vẫn k cho mink thank you very much!!!!
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
a, Cho a,b,n \(\in\)N* Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b, Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)So sánh A và B
a, Cho a,b,n\(\in\)N*. Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
b, Cho \(A=\frac{10^{11}-1}{10^{12}-1}\); \(B=\frac{10^{10}+1}{10^{11}+1}\). So sánh A và B
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
a+n/b+n và a/b . a,b,n thuộc N* hãy so sánh \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
a) Cho \(a,b,n\inℕ^∗\) . Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho \(A=\frac{10^{11}-1}{10^{12}-1}\); \(B=\frac{10^{10}-1}{10^{11}-1}\). Hãy so sánh
c) Rút gọn biểu thức \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
khôn thế a zai
a) Cho a , b , n \(\in\)N* Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b)Cho A = \(\frac{^{10^{11}}-1}{10^{12}-1}\); B=\(\frac{10^{10}+1}{10^{11}+1}\)So sánh A và B
mình làm được câu a thôi. bạn có bấm đúng k để mình làm cho
thôi mình làm hết cho
a) xét hiệu ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
với n,b, thuộc N => b(b+n) luôn >0
với n >0 => nếu b>a => b-a>0 <=> n(b-a) >0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}>0\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
ngược lại nếu b<a => b-a<0 <=> n(b-a)<0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}
a)Cho a,b,n thuoc N*.Hay so sanh\(\frac{a+n}{b+n}\) va \(\frac{a}{b}\)
b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\)
B=\(\frac{10^{10}+1}{10^{11}+1}\)
Hay so sanh A va B