cho x,y,z,t >0 thỏa mãn :x+y+z+t=2.cmr:(x+y+z)(x+y)>=16xyzt
cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
cho x,y,z,t là các số nguyên dương thỏa mãn x^2+z^2=y^2+t^2 CMR : x+y+z+t chia hết cho 2
2. Cho x,y,z,t ≠0 và x,y,z,t thỏa mãn x/y=y/z=z/t=t/x . Tính giá trị biểu thức M = 2x-y/z+t + 2y-z/t+x + 2z-t/x+y + 2t-x/y=z
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .
\(\Rightarrow x=y;y=z;z=t;t=x\)
\(\Rightarrow x=y=z=t\)
\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)
\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)
\(M=\dfrac{1}{2}.4\)
\(M=2\)
Cho các số thực x, y, z, t khác 0 thỏa mãn: x mũ 2 + y mũ 2 = z mũ 2 + t mũ 2 = 2016 và xz + yt =0
CMR: x mũ 2 + z mũ 2 = y mũ 2 + t mũ 2 = 2016 và xy + zt = 0
Cho x,y,z,t khác 0 thỏa mãn y^2=zt, z^2=yt
Chứng minh x/t = (x^3 + y^3 + z^3)/(y^3 + z^3 + t^3)
Cho x,y,z khác 0 thỏa mãn (n e N)
y+z+t-nx/x = z+t+x-ny/y = t+x+y-nz/z = x+y+z-nt/t
và x+y+z+t=2012 .Tính P =x+2y-3z+t
Cho x,y,z,t là bốn số dương nhỏ hơn 1 thỏa mãn điều kiện:xyzt=(1−x)(1−y)(1−z)(1−t)CMR: \(x^2+y^2+z^2+t^2\ge1\)
Theo giả thiết cho: \(xyzt=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1-t\right)\)
\(\Rightarrow\frac{1-x}{x}.\frac{1-y}{y}.\frac{1-z}{z}.\frac{1-t}{t}=1\)
Đặt \(\left(\frac{1-x}{x},\frac{1-y}{y},\frac{1-z}{z},\frac{1-t}{t}\right)\rightarrow\left(a,b,c,d\right)\). Lúc đó thì giả thiết được viết lại thành abcd = 1
Ta có: \(a=\frac{1-x}{x}=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\Rightarrow x^2=\frac{1}{\left(a+1\right)^2}\)
Tương tự, ta có: \(y^2=\frac{1}{\left(b+1\right)^2};z^2=\frac{1}{\left(c+1\right)^2};t^2=\frac{1}{\left(d+1\right)^2}\)và khi đó ta cần chứng minh:\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge1\)
Ta có BĐT phụ sau: \(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(*)
Thật vậy, theo BĐT Cauchy-Schwarz cho hai dãy số (pq;1) và \(\left(\frac{p}{q};1\right)\), ta có: \(\left(pq+1\right)\left(\frac{p}{q}+1\right)\ge\left(p+1\right)^2\)
\(\Rightarrow\frac{1}{\left(p+1\right)^2}\ge\frac{\frac{q}{p+q}}{pq+1}\)(1)
Tương tự ta có: \(\Rightarrow\frac{1}{\left(q+1\right)^2}\ge\frac{\frac{p}{p+q}}{pq+1}\)(2)
Cộng theo vế của 2 BĐT (1) và (2), ta được:
\(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(đúng với (*))
Áp dụng vào bài toán, ta được:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge\frac{1}{ab+1}+\frac{1}{cd+1}\)
\(=\frac{1}{\frac{1}{cd}+1}+\frac{1}{cd+1}=\frac{cd}{cd+1}+\frac{1}{cd+1}=1\)
Đẳng thức xảy ra khi \(a=b=c=d=1\)hay x = y = z = t = \(\frac{1}{2}\)
22222222222222222222222
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)
mik cần c3 , ai làm giúp mik đc ko
Cho các số thực x,t,z thỏa mãn \(0< x,y,z\le1\)
CMR: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y
<=> 1+z+xy >= x+y+z
<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)
tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)
cộng theo vế của (1), (2), (3) ta được
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)
dấu "=" xảy ra khi x=y=z=1
\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)
Do \(1\ge x^2\)và \(y\ge xy\)
Dấu = xảy ra khi x = y = z = 1
Xét biểu thức:\(\frac{x}{1+y+zx}-\frac{1}{x+y+z}=\frac{x\left(x+y+z\right)-\left(1+y+zx\right)}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{x^2+xy-1-y}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{\left(x+y+1\right)\left(x-1\right)}{\left(1+y+zx\right)\left(x+y+z\right)}\le0\)(Đúng vì \(x,y,z>0;x\le1\))
\(\Rightarrow\frac{x}{1+y+zx}\le\frac{1}{x+y+z}\)
Tương tư, ta có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z}\); \(\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Đẳng thức xảy ra khi x = y = z = 1