\(\left(5x+y\right)⋮19\) thì \(\left(4x-3y\right)⋮19\)
giải hệ pt sau
a\(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) b\(\left\{{}\begin{matrix}3x_{ }-2y=11\\4x-5y=3\end{matrix}\right.\) c\(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=_{ }-31\end{matrix}\right.\) D\(\left\{{}\begin{matrix}7X+5Y=19\\3x+5y=31\end{matrix}\right.\)
e\(\left\{{}\begin{matrix}7x-5y=3\\3x+10y=62\end{matrix}\right.\) f\(\left\{{}\begin{matrix}2x+5y=11\\3x+2y=11\end{matrix}\right.\) g\(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
Tìm nghiệm nguyên của các pt sau
a,\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)\)\(=16\)
\(b,2x^2+4x=19-3y^2\)
giúp mk vs
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
câu 3: giải hệ phương trình
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5x}{6}-y=\dfrac{-5}{6}\\\dfrac{2x}{2x+y}+3y=\dfrac{-2}{3}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x\sqrt{3}+3y=1\\2x-y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.=17\)
giúp mk vs ạ mk cần gấp
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5a+b=5\\15a=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{5}\\b=-3\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{6}{x}=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
Mọi người ơi !!!
Cho mình hỏi mẹo làm các bài dạng như thế này không ạ???
\(4\left(x-3\right)y^2+2\left(x^2-4x+3\right)y+x^2-5x+24=0\)
\(\left(y+2\right)x^2-y^2-3y-1=0\\\)
\(x^2+xy+3x+2y=1\)
\(2x^2-2xy-5x+y+19=0\)
\(x^2+x\left(3y-1\right)+2y^2-5=0\)
- Chỉ có vận dụng linh hoạt các phương pháp đã học thôi, chẳng có mẹo nào đâu :>>
Phá ngoặc rồi thu gọn
a) \(5x^2-\left(3y^2+5x^2\right)-\left(4x^2-3y^2\right)\)
b) \(2x\left(x^2-y^2\right)-3x\left(2x^2+3y^2\right)\)
a/ \(5x^2-\left(3y^2+5x^2\right)-\left(4x^2-3y^2\right)\)
\(=5x^2-3y^2-5x^2-4x^2+3y^2\)
\(=\left(5x^2-5x^2-4x^2\right)+\left(3y^2-3y^2\right)\)
\(=-4x^2\)
b/ \(2x\left(x^2-y^2\right)-3x\left(2x^2+3y^2\right)\)
\(=2x^3-2xy^2-6x^3-9xy^2\)
\(=\left(2x^3-6x^3\right)+\left(-2xy^2-9xy^2\right)\)
\(=-4x^3-11xy^2\)
a)5x^2 - (3y^2 + 5x^2 ) - (4x^2 - 3y^2)
=5x^2 - 3y^2 - 5x^2 - 4x^2 + 3y^2
=5x^2 - 5x^2 - 4x^2 - 3y^2 + 3y^2
=-4x^2
b)2x(x^2 - y^2) - 3x (2x^2 +3y^2)
=2x^3 - 2xy^2 - 6x^3 - 9xy^2
=2x^3 - 6x^3 -2xy^2 -9xy^2
=-4xy^3 - 11xy^2
\(\left\{{}\begin{matrix}5x^2 +3x\sqrt{x^2-y}=3y+8\\\left(4x-2\right)\sqrt{x^2-y}=5x+2y-5x^2+2\end{matrix}\right.\)
Rút gọn các biểu thức sau:
a/ \(\left(3x-1\right)^2-2\left(2-5x\right)-2\left(x^2^{^{ }}+x-1\right)\left(x-\dfrac{1}{2}\right)\)
b/\(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
c/\(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
d/\(\left(3a-1\right)^2+2\left(9a^2-1\right)\left(3a+1\right)\)
e/\(\left(3x-4\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
MK CÂNG GẤP Ạ AI NHANH MK SẼ VOTE Ạ
b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)
\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)
\(=-x^2+18xy\)
c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
\(=\left(2a-3b\right)^2-16c^2\)
\(=4a^2-12ab+9b^2-16c^2\)
Rút gọn biểu thức :
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
b) \(\left(4x^2-3y\right).2y-\left(3x^2-4y\right).3y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)