\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}\)
x + y +z = 5
Tìm x,y,z
tim x,y,z khi
\(\frac{x}{7}=\frac{y}{3}va\)x-24=y
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)va y-x=48
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)va x-y- z=28
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)va 2x+3-z=-14
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
3) tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\) và -x - y + z = -10
b) \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\) và x +y + z = 92
c) \(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y -z = 186
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
e) 2x = 3y ; 5y = 7z và 3x - 7y + 5c = 30
f) 2x = 3y = 4z và x + y + z = 169
g*) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x - 2y + 3z = 14
h*) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và x +y + z = 48
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
Tìm x,y,z khi:
1,\(\frac{x}{7}=\frac{y}{3}vàx-24=y\)
2,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}và,y-x=48\)
3,\(\frac{x-1}{2005}=\frac{3-y}{2006}và,x-y=4009\)
4,\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vã-y-z=28\)
5,\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}và2x+3y-z=-14\)
6,\(3x=y;5y=4zvà6x+7y+8z\)
ba số x,y,z thỏa mãn \(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}\) và 2x+y+z=14. Khi đó xyz=..........
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)
+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)
+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)
+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)
\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)
Vậy \(xyz=\frac{65856}{1331}\)
\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}\)và x+y+z=5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)
\(\cdot\frac{x}{14}=\frac{1}{4}\Rightarrow x=\frac{14.1}{4}=\frac{7}{2}\)
\(\cdot\frac{y}{2}=\frac{1}{4}\Rightarrow y=\frac{2.1}{4}=\frac{1}{2}\)
\(\cdot\frac{z}{4}=\frac{1}{4}\Rightarrow z=\frac{4.1}{4}=1\)
Vậy \(\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{2}\\z=1\end{cases}}\)
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)
\(\hept{\begin{cases}\frac{x}{14}=\frac{1}{4}\\\frac{y}{2}=\frac{1}{4}\\\frac{z}{4}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{4x}{56}=\frac{14}{56}\\\frac{2y}{4}=\frac{1}{4}\\z=1\end{cases}\Rightarrow}\hept{\begin{cases}4x=14\\2y=1\\z=1\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{2}\\z=1\end{cases}}}\)
Vậy ...
Áp dụng công thức dãy tỉ số bằng nhau có
\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)
\(\frac{x}{14}=\frac{1}{4}\Rightarrow x=\frac{1}{4}.14=\frac{7}{2}\)
\(\frac{y}{2}=\frac{1}{4}\Rightarrow y=\frac{1}{4}.2=\frac{1}{2}\)
\(\frac{z}{4}=\frac{1}{4}\Rightarrow z=\frac{1}{4}.4=1\)
Tìm x, y, z :
a, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và x2+y2+z2=14
b, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=50
c, 2x=3y=5z và x+y-z=95
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
b) Giải:
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)
Ta có: \(2x+3y-z=50\)
\(\Rightarrow2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Rightarrow4k+2+9k+6-4k-3=50\)
\(\Rightarrow\left(4k+9k-4k\right)+\left(2+6-3\right)=50\)
\(\Rightarrow9k+5=50\)
\(\Rightarrow9k=45\)
\(\Rightarrow k=5\)
\(\Rightarrow x=5.2+1=11\)
\(\Rightarrow y=3.5+2=17\)
\(\Rightarrow z=4.5+3=23\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(11;17;23\right)\)
c) Giải:
Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{1}{19}}=1805\)
+) \(\frac{x}{\frac{1}{2}}=1805\Rightarrow x=\frac{1805}{2}\)
+) \(\frac{y}{\frac{1}{3}}=1805\Rightarrow y=\frac{1805}{3}\)
+) \(\frac{z}{\frac{1}{5}}=1805\Rightarrow z=361\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1805}{2};\frac{1805}{3};361\right)\)
tìm x,y
\(\frac{x+3}{-15}=\frac{1}{3}\)
\(\frac{21}{x}=\frac{y}{16}=\frac{-14}{z}=\frac{7}{4}\)với x,y,z thuộcz sao
\(\frac{-21}{x}\frac{y}{-16}=\frac{81}{z}=\frac{-3}{4}\)với x,y,z \(\in\)z sao
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Áp dụng bất đẳng thức Cauchy :
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)
Tương tự ta cũng có :
\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)
\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)
Cộng theo vế ta được :
\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{(\frac{x^2}{y})^2}{x+z}+\frac{(\frac{y^2}{z})^2}{x+y}+\frac{(\frac{z^2}{x})^2}{y+z}\geq \frac{\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)^2}{x+z+x+y+y+z}\)
Tiếp tục áp dụng:
\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq \frac{(x+y+z)^2}{y+z+x}=x+y+z\)
Do đó: \(\text{VT}\geq \frac{(x+y+z)^2}{x+z+x+y+y+z}=\frac{x+y+z}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$