Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRAN THI QUYNH NHI
Xem chi tiết
Park Jimin - Mai Thanh H...
21 tháng 10 2018 lúc 16:59

Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !

\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'

Ta có : \(x-24=y\)   hay cũng có thể viết \(x-y=24\)

Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)          (    vì \(x-y=24\) )

\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)

\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)

Vậy \(x=42\)         và                 \(y=18\)

Alayna
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 18:58

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

Alayna
1 tháng 10 2016 lúc 8:52

/vip/tranthimyduyen

Alayna
1 tháng 10 2016 lúc 8:52

@Trịnh Thị Như Quỳnh 

Đỗ Thị Phương Linh
Xem chi tiết
Michiel Girl mít ướt
13 tháng 3 2016 lúc 17:01

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

Michiel Girl mít ướt
13 tháng 3 2016 lúc 16:53

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

lưu khánh huyền
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Nguyễn Huy Tú
8 tháng 11 2016 lúc 13:50

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)

+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)

+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)

+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)

\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)

Vậy \(xyz=\frac{65856}{1331}\)

Thành Lê
8 tháng 11 2016 lúc 12:45

x=\(\frac{28}{9}\)

Thành Lê
8 tháng 11 2016 lúc 12:46

y=\(\frac{14}{3}\)

Võ Trần Gia Linh
Xem chi tiết
Nguyễn Tấn Phát
9 tháng 7 2019 lúc 9:57

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)

\(\cdot\frac{x}{14}=\frac{1}{4}\Rightarrow x=\frac{14.1}{4}=\frac{7}{2}\)

\(\cdot\frac{y}{2}=\frac{1}{4}\Rightarrow y=\frac{2.1}{4}=\frac{1}{2}\)

\(\cdot\frac{z}{4}=\frac{1}{4}\Rightarrow z=\frac{4.1}{4}=1\)

Vậy \(\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{2}\\z=1\end{cases}}\)

T.Ps
9 tháng 7 2019 lúc 9:59

#)Giải :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)

\(\hept{\begin{cases}\frac{x}{14}=\frac{1}{4}\\\frac{y}{2}=\frac{1}{4}\\\frac{z}{4}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{4x}{56}=\frac{14}{56}\\\frac{2y}{4}=\frac{1}{4}\\z=1\end{cases}\Rightarrow}\hept{\begin{cases}4x=14\\2y=1\\z=1\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{2}\\z=1\end{cases}}}\)

Vậy ...

Vy Thị Hoàng Lan ( Toán...
9 tháng 7 2019 lúc 10:02

Áp dụng công thức dãy tỉ số bằng nhau có 

\(\frac{x}{14}=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{14+2+4}=\frac{5}{20}=\frac{1}{4}\)

\(\frac{x}{14}=\frac{1}{4}\Rightarrow x=\frac{1}{4}.14=\frac{7}{2}\)

\(\frac{y}{2}=\frac{1}{4}\Rightarrow y=\frac{1}{4}.2=\frac{1}{2}\)

\(\frac{z}{4}=\frac{1}{4}\Rightarrow z=\frac{1}{4}.4=1\)

Quỳnh Đinh
Xem chi tiết
Aki Tsuki
21 tháng 11 2016 lúc 13:22

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

Kirigawa Kazuto
21 tháng 11 2016 lúc 12:21

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

Nguyễn Huy Tú
21 tháng 11 2016 lúc 12:29

b) Giải:
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)

Ta có: \(2x+3y-z=50\)

\(\Rightarrow2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Rightarrow4k+2+9k+6-4k-3=50\)

\(\Rightarrow\left(4k+9k-4k\right)+\left(2+6-3\right)=50\)

\(\Rightarrow9k+5=50\)

\(\Rightarrow9k=45\)

\(\Rightarrow k=5\)

\(\Rightarrow x=5.2+1=11\)

\(\Rightarrow y=3.5+2=17\)

\(\Rightarrow z=4.5+3=23\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(11;17;23\right)\)

c) Giải:
Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{1}{19}}=1805\)

+) \(\frac{x}{\frac{1}{2}}=1805\Rightarrow x=\frac{1805}{2}\)

+) \(\frac{y}{\frac{1}{3}}=1805\Rightarrow y=\frac{1805}{3}\)

+) \(\frac{z}{\frac{1}{5}}=1805\Rightarrow z=361\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(\frac{1805}{2};\frac{1805}{3};361\right)\)

 

 

 

 

 

 

 

 

 

Phạm Tiến Hùng
Xem chi tiết
dbrby
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 20:14

Áp dụng bất đẳng thức Cauchy :

\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)

Tương tự ta cũng có :

\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)

\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)

Cộng theo vế ta được :

\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Akai Haruma
16 tháng 8 2019 lúc 21:35

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{x^2}{y})^2}{x+z}+\frac{(\frac{y^2}{z})^2}{x+y}+\frac{(\frac{z^2}{x})^2}{y+z}\geq \frac{\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)^2}{x+z+x+y+y+z}\)

Tiếp tục áp dụng:

\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq \frac{(x+y+z)^2}{y+z+x}=x+y+z\)

Do đó: \(\text{VT}\geq \frac{(x+y+z)^2}{x+z+x+y+y+z}=\frac{x+y+z}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$