Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GϹͳ. VΔŋɧ⑧⑤
Xem chi tiết
Nguyễn Duy Khang
8 tháng 2 2021 lúc 8:30

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)

 

Aaron Lycan
8 tháng 2 2021 lúc 8:33

Áp dụng tính chất dãy tỉ số băng nhau,ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)

 

Liễu Lê thị
Xem chi tiết
Tô Hà Thu
7 tháng 11 2021 lúc 9:23

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Nguyễn Thảo Trang
7 tháng 11 2021 lúc 9:25

vì a/b = c/d

theo dãy tỉ số bằng nhau ta có

a/b =c/d = a+c/b+d = a-c/b-d (đỗi vị trí)

⇒  2a-2b/2a+3b = 2c-3d/2c-3d

Nguyễn Huyền Trâm
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
20 tháng 6 2019 lúc 8:11

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)

b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Dương Thanh Ngân
Xem chi tiết
Từ Hạ
18 tháng 7 2018 lúc 9:38

(+) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

(+) \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (*)

\(\Leftrightarrow4ac+6bc-6ad-9bd=4ac-6bc+6ad-9bd\)

\(\Leftrightarrow12bc=12ad\Leftrightarrow bc=ad\) (đúng)

Vậy (*) đúng (đpcm)

Công chúa cầu vồng
Xem chi tiết
Shizadon
5 tháng 11 2017 lúc 19:28

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{3c-3d}\)

Vậy \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\) (ĐPCM)

Phúc Nguyễn
Xem chi tiết
Hoang Hung Quan
10 tháng 7 2017 lúc 18:30

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases}a=bk\\c=dk\end{cases}\)

Thay vào vế trái ta có:

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

Thay vào vế phải ta có:

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

\(\Rightarrow VP=VT=\dfrac{2k+3}{2k-3}\Rightarrow\) Đpcm


Trần Huyền Trang
28 tháng 11 2018 lúc 20:34

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)

\(\Rightarrow\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (ĐPCM)

Jack Viet
Xem chi tiết
Nguyễn Thị Ngọc Ánh
5 tháng 6 2018 lúc 19:13

a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)

Ta có :

\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)

Công chúa vui vẻ
Xem chi tiết
Phạm Ngân Hà
4 tháng 11 2017 lúc 21:16

a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có:

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)

Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

kuroba kaito
4 tháng 11 2017 lúc 21:25

\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số = nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)

= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)

Phạm Ngân Hà
4 tháng 11 2017 lúc 21:38

Còn 3 đến 4 cách nữa: áp dụng t/c của dãy tỉ số bằng nhau, t/c của tỉ lệ thức, áp dụng ĐNg,...

Nguyễn Huyền Trâm
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
18 tháng 6 2019 lúc 16:19

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự