CMR với mọi số nguyên a,b : a) ab(a4-b4) chia hết cho 5
b) ab(a2-b2) chia hết cho 6
cho 5 số nguyên a1,a2,a3,a4,a5. Gọi b1,b2,b3,b4,b5 là hoán vị của 5 số đã cho.
CMR: (a1-b1).(a2-b2).(a3-b3).(a5-b5) chia hết cho 2
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
cho a,b là các số nguyên dương
cmr ab(a2+2)(b2+2) luôn chia hết cho 9
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
Cho 5 số nguyên a1,a2,a3,a4,a5 . Gọi b1,b2,b3,b4,b5 là hoán vị của 5 đã số đã cho . Chứng minh rằng tích (a1 - b1 ).(a2 -b2).(a3 - b3).(a4 - a4).(a5 - b5) chia hết cho 2
Các bạn giúp mik thì mik cảm ơn rất nhìu <3
cho a,b là các số nguyên dương thỏa mãn a2-ab+\(\dfrac{3}{2}\)b2 chia hết cho 25. Chứng minh rằng cả a và b đều chia hết cho 5.
cho a4+b4+c4+d4 chia hết cho 12.C/m a2+b2+c2+d2 chia hết cho 12
cho a4+b4+c4+d4 chia hết cho 12.C/m a2+b2+c2+d2 chia hết cho 12
cho các số nguyên a ; b thỏa mãn ( a2 + b2 ) chia hết cho 74.CMR a x b chia hết cho 74
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath