1. Cho phân thức M = 7x^2 - 29x + 4 / x^2 - 16
a. Tìm điều kiện xác định của M.
b. Rút gọn M
c. Tìm x để M= 0
d. Tìm x để M thuộc Z
Giúp mình nha.THANKS
Cho các biểu thức
\(A=\dfrac{x-3}{x+2}vàB=\dfrac{6-7x}{x^{^2}-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
a) Tìm điều kiện xác định và rút gọn biểu thức B
b) \(ChoA=\dfrac{1}{2},khiđóhãytínhgiátrịcủaB\)
c)Đặt M = A / B . Tìm các giá trị của X để /M/=-M
GIÚP mik nha mn mik đang cần gấp =(((
MN ƠI GIÚP EM VS 15PHÚT NX EM PK NỘP R =(((
Cho biểu thức M =\(\frac{\sqrt{9x^2-6x+1}}{9x^2-1}\).
a) Tìm điều kiện xác định của M;
b) Rút gọn biểu thức M;
c) Tìm giá trị của x để M =\(\frac{1}{4}\) ;
d) Tìm giá trị của x để M < 0
\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)
\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)
với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)
với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)
\(c,\) th1 : \(M=\frac{1}{3x+1}\) khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\)
th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)
\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)
\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)
\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)
th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)
th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)
Cho biết : M = 4/x+2+3/x-2-5x+2/x^2-4 a) tìm điều kiện xác định của M b) rút gọn M c) tìm x để M = 2/5
\(M=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+3\left(x+2\right)-\left(5x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2}{x+2}\)
Để \(M=\dfrac{2}{5}\) thì \(\dfrac{2}{x+2}=\dfrac{2}{5}\)
Suy ra :
\(2.5=2\left(x+2\right)\)
\(\Leftrightarrow2x+4=10\)
\(\Leftrightarrow x=3\)
Vậy \(M=\dfrac{2}{5}\) thì x = 3
Bai 1 :Tìm giá trị của m để f (x) = x^3 + x2-11x + m
bai 2 :cho phân thức A = x^2 + 2x +1 x^2 – x – 2
a. Tìm điều kiện của x để biểu thức A xác định
b. Rút gọn biểu thức a
c. Tìm các giá trị nguyên của x để A có giả trị nguyên
Bài 1.
Cho M = \(\frac{3}{\sqrt{x}-2}\)+\(\frac{2}{\sqrt{x}+2}\)+\(\frac{8}{x-4}\)
a, tìm điều kiện xác định, rút gọn M.
b, tìm x để M\(\in\)Z
c, tìm x để M < 2
d, tìm x để M = 1
a/ Đkxđ: x\(\ge\)0 x\(\ne\)4
=\(\frac{3\left(\sqrt{x}+2\right)+2\left(\sqrt{x}-2\right)+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{5}{\sqrt{x}-2}\)
b/ Với x\(\ge\)0 vã\(\ne\)4
Để M\(\in\)Z \(\Leftrightarrow\) \(\frac{5}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\) \(\sqrt{x}-2\inƯ\left(5\right)\)
\(\begin{cases}\sqrt{x}-2=5\\\sqrt{x}-2=-5\\\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Rightarrow\begin{cases}x=49\left(tmĐKXĐ\right)\\KhongcogiatriTm\\x=9\left(tmĐKXĐ\right)\\x=1\left(tmĐKXĐ\right)\end{cases}\)
Vậy để M\(\in\)Z thì x=.....
c/ Với...
Để M<2 thì \(\frac{5}{\sqrt{x}-2}< 2\Rightarrow\frac{5-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}< 0\)
\(\left[\begin{array}{nghiempt}\hept{\begin{cases}9-2\sqrt{x}>0\\\sqrt{x}-2< 0\end{array}\right.\\\hept{\begin{cases}9-2\sqrt{x}< 0\\\sqrt{x}-2>0\end{array}\right.\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{81}{4}\\x< 4\end{array}\right.\\\hept{\begin{cases}x>\frac{81}{4}\\x>4\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x< 4\\x>\frac{81}{4}\end{array}\right.}\)
Cho biểu thức :
M=\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) Tìm điều kiện xác định và rút gọn biểu thức M
b) Tìm giá trị cảu biểu thức M khi x2-4=0
c) Tìm x để M có giá trị nguyên
1. Cho biểu thức M=\(\frac{3}{x-1}\)+ \(\frac{1}{x^2-x}\)
a. Tìm điều kiện của x để giá trị của biểu thức đc xác định
b. rút gọn M rồi tính giá trị M khi x=5
c. Tìm x để biểu thức M cs giá trị =0
d. Tìm x để biểu thức M cs giá trị =-1
2. tính giá trị nhỏ nhất của 4x2+4x+11
giúp mk nha c.ơn
M xác định
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)
\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)
Thay x=5 ta có:
\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)
Vậy \(M=5\)tại x=5
\(M=0\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)
Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)
\(M=-1\)
\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy với \(x=-1\)thì \(M=-1\)
\(4x^2+4x+11\)
\(=\left(2x\right)^2+2.2x.1+1^2+10\)
\(=\left(2x+1\right)^2+10\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy Min \(4x^2+4x+11=10\Leftrightarrow x=-\frac{1}{2}\)
bài 13 cho M=\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)
a,tìm điều kiện xác định của biểu thức M
b,rút gọn M
c, tìm các giá trị nguyên của a để M nhận giá trị nguyên
a)
\(ĐKXĐ:\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b)
\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)
\(=\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x+2}{x-2}\)
c)
\(\dfrac{x+2}{x-2}=\dfrac{x-2+4}{x-2}=\dfrac{x-2}{x-2}+\dfrac{4}{x-2}=1+\dfrac{4}{x-2}\)
vậy M nhận giá trị nguyên thì 4⋮x-2
=> x-2 thuộc ước của 4
\(Ư\left(4\right)\in\left\{-1;1;-2;2;;4;-4\right\}\)
ta có bảng sau
x-2 | -1 | 1 | -2 | 2 | 4 | -4 |
x | 1(tm) | 3(tm) | 0(tm) | 4(tm) | 6(tm | -2(loại) |
cho phân thức M= \(\frac{x^4+x^3+2x-4}{2x^3+4x^2}\)
a. tìm điều kiện để giá trị của phân thức được xác định.
b. rút gọn biểu thức M