Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Tâm Đan
Xem chi tiết
LEO ZERO9
4 tháng 1 2020 lúc 20:34

hì.Bài này bồi nhể chị.Chị hỏi mà ko ai trả lời hả

Khách vãng lai đã xóa
Đinh Thúy Hiền
Xem chi tiết
Hoàng hôn  ( Cool Team )
29 tháng 9 2019 lúc 10:30

S=4+42+43+44+...+499

4S=42+43+44+...+499+4100

4S-S=4100-1

3S=4100-1

S=(4100-1):3 < 6.498

vậy S < 6.498

Nguyễn Bùi Hà Chi
Xem chi tiết
Nguyễn Đắc Linh
15 tháng 3 2023 lúc 21:10

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2

Nguyễn Thị Giang
Xem chi tiết
nguyen van tu
15 tháng 3 2015 lúc 8:59

cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2

phạm minh ngọc
13 tháng 5 2016 lúc 15:50
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng) Nên: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
tran thuy trang
Xem chi tiết
Ngô Văn Tuyên
28 tháng 9 2015 lúc 23:25

S = 2+2+22+23+............+299

2S = 22+22+23+............+2100

2S - S = S = 2100 = 25.295 = 32.295 > 10.295

 

Earth-K-391
Xem chi tiết
Đỗ Thanh Hải
25 tháng 5 2021 lúc 10:46

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.

Nguyễn Ngọc Lan
Xem chi tiết
Kiên-Messi-8A-Boy2k6
23 tháng 3 2018 lúc 20:10

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)

\(\Rightarrow S>\frac{50.1}{100}\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Nguyễn Thị Xuân Tuyết
23 tháng 3 2018 lúc 20:10

nhỏ hơn

Phùng Minh Quân
23 tháng 3 2018 lúc 20:10

Ta có : 

\(S=\frac{1}{51}+\frac{1}{51}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) ( có 50 số \(\frac{1}{100}\) ) 

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~ 

hoàng nguyễn phương thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2022 lúc 15:14

Bài 1: 

a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)

=>\(3P=2^{101}-2\)

hay \(P=\dfrac{2^{101}-2}{3}\)

b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)

=>\(6Q=5^{101}+1\)

hay \(Q=\dfrac{5^{101}+1}{6}\)

Phạm Bảo Ngọc
Xem chi tiết