Cho \(\frac{b.z-c.y}{a}\)=\(\frac{c.x-a.z}{b}\)=\(\frac{a.y-b.x}{c}\)
CM: x:y:z = a:b:c
Biết \(\frac{b.z-c.y}{a}=\frac{c.x-a.z}{b}=\frac{a.y-b.x}{c}\)(với a,b,c khác 0)
Chứng minh rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)
=>bz-cy=0;cx-az=0;ay-bx=0
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
biết (b.z-c.y)/a=(c.x-a.z)/b=(a.y-b.x)/c {a,b,c khác 0}.chứng minh rằng : x/a=y/b=z/c
Biết b.z-c.y/a = c.x-a.z/b = a.y-b.x/(a,b,c khác 0) Chứng minh rằng x/y=y/b=z/c
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)
p/s: đã sửa đề
Nếu x/a=y/b=z/c thì (b.z-c.y)/a = (c.y-a.x)/b = (a.y-b.x)/c
Cho \(\dfrac{2.y.c-3.b.z}{x}=\dfrac{3.a.z-c.x}{2.y}=\dfrac{b.x-2.a.y}{3.z}\)
Chứng minh: \(\dfrac{a}{x}=\dfrac{b}{2.y}=\dfrac{c}{3.z}\)
Bài 1:Cho a/a' + b'/b =1
b/b' +c'/c =1
CMR: a.b.c và a'.b'.c' là 2 số đối nhau.
Bài 2: Cho b.z-c.y/a = c.x-a.z/b = a.y-b.x/c
CM: x/a = y/b = z/c
Bài 3: Cho a,b,c theo a2+b2+c2 khác 0
a.b/a+b = c.c/b+c = c.a/c+a
Tính: P = a.b2+b.c2+c.a2/a3+b3+c3
bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.
Bài 1: CMR : Nếu a2 = b.c thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\) Đảo lại có đúng không?
Bài 2: Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) CMR: \(\left(\dfrac{a+b+c}{b+c+d}\right)\)3 =\(\dfrac{a}{d}\)
Bài 3: Cho dãy tỉ số: \(\dfrac{b.z-c.y}{a}=\dfrac{c.x-a.z}{b}=\dfrac{a.y-b.x}{c}\) , CMR: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
2.
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)
Tính Giá trị biểu thức : a.x - c.y + a.y + b.x - c.x + b.y biết a+b-c=(-3) và x+y=15
(Các bạn nhớ ghi rõ cách làm nhé.)
\(a.x-c.y+a.y+b.x-c.x+b.y\)
\(=\)\(\left(ax+bx-cx\right)+\left(ay+by-cy\right)\)
\(=\)\(x.\left(a+b-c\right)+y.\left(a+b-c\right)\)
\(=\)\(\left(-3\right)x+\left(-3\right)y\)
\(=\)\(\left(-3\right).\left(x+y\right)\)
\(=\)\(\left(-3\right).15\)
\(=\)\(-45\)
Chúc bạn học tốt
Biết rằng : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Hãy CM x:y:z=a:b:c
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)
\(\Leftrightarrow x:y:z=a:b:c\)
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)
=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)