Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♥ℒℴѵe♥
Xem chi tiết
Nguyễn Thiều Công Thành
29 tháng 7 2017 lúc 17:00

\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)

=>bz-cy=0;cx-az=0;ay-bx=0

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)

pham hai duong
Xem chi tiết
Anh đẹp trai
Xem chi tiết
 Mashiro Shiina
4 tháng 2 2018 lúc 17:53

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)

p/s: đã sửa đề

LE XUAN THIET
Xem chi tiết
nguyễn tường vi
Xem chi tiết
Diệu Ngọc Nguyễn
Xem chi tiết
Diệu Ngọc Nguyễn
20 tháng 11 2016 lúc 10:04

bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.

Skegur
Xem chi tiết
Trần Thị Hương
9 tháng 10 2017 lúc 21:09

2.

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)

Nguyễn Ngọc Bảo Ngân
Xem chi tiết
Phùng Minh Quân
30 tháng 1 2018 lúc 9:49

\(a.x-c.y+a.y+b.x-c.x+b.y\)

\(=\)\(\left(ax+bx-cx\right)+\left(ay+by-cy\right)\)

\(=\)\(x.\left(a+b-c\right)+y.\left(a+b-c\right)\)

\(=\)\(\left(-3\right)x+\left(-3\right)y\)

\(=\)\(\left(-3\right).\left(x+y\right)\)

\(=\)\(\left(-3\right).15\)

\(=\)\(-45\)

Chúc bạn học tốt 

Võ Bảo Trân 10
30 tháng 1 2018 lúc 9:48

Bạn lấy bài này ở đâu thế ?

Thủy Lê
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2019 lúc 16:53

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)

\(\Leftrightarrow x:y:z=a:b:c\)

Edogawa Conan
5 tháng 10 2019 lúc 16:57

Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)