Tìm 2 số tự nhiên m và n sao cho \(2^m+2^n=2^{m+n}\)
tìm số tự nhiên m và n sao cho 2^m - 2^n = 256
Tìm m,n là số tự nhiên sao cho : 2^m+2^n=2^(m+n)
Giả sử m ≥ n ⇒ 2m ≥ 2n
Chia cả 2n ≠ 0 ⇒ 2m-n + 1 = 2m
+ Nếu m=0 ⇒ 2-n=0 (loại)
+ Nếu m≥1 ⇒ 2m chẵn
⇒ 2m-n lẻ ⇒ m-n=0 ⇔ m=n
⇒ 2m=20+1 ⇒ 2m=2 ⇔ m=1 ⇒ n=1 (tm)
Vậy, m=n=1
1,tìm chữ số tự nhiên x và y sao cho ; 783xy chia hết cho126
2, tìm m,n thuộc sao cho 2 mũ m +2 mũ n= 2 mũ m+n
Tìm số tự nhiên m và n sao cho 6^m+2^n+2 là số chính phương
Đặt A = m2 + n2 + 2.m.n +m + 3n + 2 ta có :
A > m2 +n2 + 2.m.n =( m+n )2 ;
và A<m2 +n2 + 4 +2.m.n + 4.m+ 4n = ( m+n+ 2 )2
Vậy A nằm giữa hai số chính phương liên tiếp nên :
A chính phương <=> A = ( m + n + 1 )2
<=> A = m2 + n2 + 2.m.n + 2.m + 2.n + 1 <=> m = n + 1
Vậy n \(\in\)N tùy ý và m = n+ 1
tìm số tự nhiên m,n sao cho
2^m+n=2^m+2^n
Tìm các số tự nhiên m và n sao cho: 3^m-2^n=5
Tìm tất cả các số Tự Nhiên m,n sao cho m^2 + 2 là SNT và 2m^2 = n^2 - 2.
Ta có: \(2m^2=n^2-2\)
\(m^2+2=n^2-m^2\)
mà \(m^2+2\)là số nguyên tố
=>\(n^2-m^2\)là số nguyên tố. Lại có: \(n^2-m^2=\left(n-m\right)\left(n+m\right)\)
=>\(\orbr{\begin{cases}n-m=1\\n+m=1\end{cases}}\)(Vì SNT chỉ chia hết cho 1 hoặc chính nó)
=>\(\orbr{\begin{cases}2m^2=\left(1+m\right)^2-2\\2m^2=\left(1-m\right)^2-2\end{cases}}\)=>\(\orbr{\begin{cases}m^2-2m+1=0\\m^2+2m+1=0\end{cases}}\)<=>\(\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)<=>\(m=1\)<=>\(n=2\)
Tìm hai số tự nhiên m,n sao cho (m-2).(n+n-3)=5
\(\left(m-2\right)\left(n+n-3\right)=5\)
\(\Rightarrow\left(m-2\right)\left(2n-3\right)=5\)
\(\Rightarrow m-2\inƯ\left(5\right);2n-3\inƯ\left(5\right)\)
...............
Ta có: (m-2).(2n-3) =5 hay 2mn-3m-4n+6==>m=3; n=4
1,cho A=3+3^2+3^3+3^4+...+3^100
tìm số tự nhiên n , biết : 2A+3=3^n
2,tìm số nguyên n lớn nhất sao cho ;
n^200<6^300
3,tìm số nguyên dương m và n sao cho
2^m.2^n=256