Tìm nguyện nguyên của pt : 9b + 8c = 3
ĐA : b = 8a + 3, c = - 9k - 3 (k nguyên)
tìm các số nguyên a,b,c thỏa mãn hệ pt \(\int^{2a+3b=5}_{3a-4c=6}\)
bài này thu gọn là tìm nghiệm nguyên của pt 9b+8c=3 ( ai giúp với)
pt(1) nhân 3 ; pt (2) nhân 2 sau đó trừ hai pt đc pt bậc nhất hai ẩn b;c
tìm nghiệm nguyên pt thay vào tìm a
nhưng bài này hình như phải giải pt nghiệm nguyên cậu giải thử chỗ pt nghiệm nguyên đi thắng
(1) x 3 - (2) x 2 = 3 <=> 9b + 8c = 3 <=> c \(=\frac{3-9b}{8}=\frac{-8b-8-b+11}{8}=-8-\frac{b-11}{8}\)
Vì c thuộc Z => (b -11 )/8 thuộc Z => b - 11 chia hết cho 8 >b - 11 = 8t ( t thuọc Z )
=> b = 8t + 11 thay vào tìm c => a
KL :..
A,Cho a/b=c/d CMR (8a+9b)/(8c+9d)=(8a-9b)/(8c-9d)
B,B2=a*c CMR (A2+b2)/ (b2+c2)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{8a}{8c}=\frac{9b}{9d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{8a}{8c}=\frac{9b}{9d}=\frac{8a+9b}{8c+9d}=\frac{8a-9b}{8c-9d}\left(dpcm\right)\)
b) xem lại đề nha b
chứng minh rằng đa thức P ( x ) = x mũ 3 - x + 5 k có nguyện nguyên
Giả sử P(x)=x ³−x+5 = 0
=>x³- x = – 5
=>x . x .x – x = – 5
=>(x . x – x) x = -5
=> x ( x – 1 ) . x = -5
=> x ( x – 1 ) = -5
=>x∈-5;-4 để P(x)=0
=> P(x)= x^3-x+5
ko có nghiệm ∈N(nguyên dương)
1. Cho 12a+c=9b. Tìm k biết k= (2a+b+1)/(4c)= (c-2a+2)/(3b)=(3b-4a-2)/3
2. Cho 3 số nguyên a,b,c đều lớn hơn 20, một số có số lẻ các ước. 2 số còn lại đều có 3 ước. Biết a+b=c. Tìm giá trị nhỏ nhất có thể có của c.
Tìm 3 số a,b,c biết a,b,c là 3 số nguyên tố và k là số nguyên dương biết:
a2 + b2 + 16c2 = 9k2 + 1
Tìm 3 số a,b,c biết a,b,c là 3 số nguyên toosvaf k là số nguyên dương biết:
a2 + b2 + 16c2 = 9k2 + 1
Câu 5
1. Cho a+b=3 ,a=<1. Chứng minh rằng: C = \(b^3-a^3-6b^2-a^2+9b>=0\)
2. Tìm x nguyên để x4-3x3 + 5x2 - 5 x+2 là số chính phương.
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Bài 1: Giả sử \(C\ge0\)
Ta có:
\(C=b^3-a^3-6b^2-a^2+9b\ge0\)
\(\Leftrightarrow\left(b^3-6b^2+9b\right)-\left(a^3+a^2\right)\ge0\Leftrightarrow b\left(b^2-6b+9\right)-a^2\left(a+1\right)\ge0\)
\(\Leftrightarrow b\left(b-3\right)^2-a^2\left(a+1\right)\ge0\)
Mà \(a+b=3\Rightarrow b=3-a\)
\(\Rightarrow C=\left(3-a\right)\left(3-a-3\right)^2-a^2\left(a+1\right)\ge0\Leftrightarrow a^2\left(3-a\right)-a^2\left(a+1\right)=a^2\left(2-2a\right)\ge0\)
Ta có: \(a^2\ge0;a\le0\Rightarrow2a\le0\Rightarrow-2a\ge0\Rightarrow2-2a\ge2\Rightarrow C\ge0\)(luôn đúng)
Bài 2: để suy nghĩ đã á
Tìm 3 số nguyên dương a,b,c biết ab=c; bc=4a; ac=9b.
a=3
b=2
c=6
Tik cho mk nha..............cảm ơn rất nhiều
Nâng cao và phát triển toán 7 tập 1 bài 41c trang 96
Bạn tham khảo nhé
cho pt:mx-2x+3=0
a, giải pt với m=-4
b, tìm giá trị của m để pt có nghiệm x=2
C, tìm giá trị của m để pt có nghiệm duy nhất
D, tìm giá trị nguyên của m để pt có nghiệm nguyên
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}