Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng trung
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Lê Nguyễn Ngân Nhi
Xem chi tiết
Acher Gilgamesh
Xem chi tiết
Vũ Trịnh Phan Hoàng
Xem chi tiết
Phạm Huyền Trang
Xem chi tiết
Hoàng Anh Thư
19 tháng 6 2019 lúc 18:23

Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Akai Haruma
19 tháng 6 2019 lúc 18:25

1.

ĐKXĐ: \(5\leq x\leq 1\) (vô lý) nên PT sai ngay từ đầu.

2.

ĐKXĐ: \(x\geq -1\)

PT \(\Leftrightarrow \sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}=\sqrt{x+4}\)

\(\Leftrightarrow 3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+4}\)

\(\Leftrightarrow 5\sqrt{x+1}=\sqrt{x+4}\)

\(\Rightarrow 25(x+1)=x+4\) (bình phương 2 vế)

\(\Leftrightarrow x=\frac{-7}{8}\) (thỏa mãn)

Vậy..........

Akai Haruma
19 tháng 6 2019 lúc 18:33

3.

ĐKXĐ: \(x\geq 1\)

Áp dụng BĐT Cauchy:

\(\sqrt{x+2}+\sqrt{x-1}\leq \frac{(x+2)+1}{2}+\frac{(x-1)+1}{2}=x+1,5\)

\(x+1,5\leq x+1,5x< 3x\) với mọi $x\geq 1$

Do đó: \(\sqrt{x+2}+\sqrt{x-1}< 3x\) với mọi $x\geq 1$. Do đó PT đã cho vô nghiệm.

4. ĐKXĐ: $x\geq 1$.

PT \(\Leftrightarrow x^2+6=4\sqrt{(x+1)(x^2-3x+3)}\)

Đặt \(\sqrt{x^2-3x+3}=a; \sqrt{x+1}=b(a,b\geq 0)\)

\(\Rightarrow a^2+3b^2=x^2+6\).

PT đã cho trở thành:

\(a^2+3b^2=4ab\)

\(\Leftrightarrow a^2+3b^2-4ab=0\)

\(\Leftrightarrow (a-3b)(a-b)=0\)\(\Rightarrow \left[\begin{matrix} a=b\\ a=3b\end{matrix}\right.\)

Với $a=b$ \(\Leftrightarrow \sqrt{x^2-3x+3}=\sqrt{x+1}\)

\(\Rightarrow x^2-3x+3=x+1\Leftrightarrow x^2-4x+2=0\)

\(\Rightarrow x=2\pm \sqrt{2}\) (thỏa mãn)

Với \(a=3b\Leftrightarrow \sqrt{x^2-3x+3}=3\sqrt{x+1}\)

\(\Rightarrow x^2-3x+3=9(x+1)\)

\(\Leftrightarrow x^2-12x-6=0\Rightarrow x=6\pm \sqrt{42}\) (thỏa mãn)

Vậy.....

nguyen minh khoi
Xem chi tiết
Âu Dương Thiên Vy
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Âu Dương Thiên Vy
Xem chi tiết