giải phương trình :
\(\sqrt{x-2}+2\cdot\sqrt{x-3}+\sqrt{x+6+6\cdot\sqrt{x-3}}=4\)
Giải các phương trình sau:
a)\(\sqrt[3]{9-x}+\sqrt[3]{7+x}=4\)
b)\(\sqrt{x-1}\cdot\sqrt[4]{x^2-4}=\sqrt{x-2}\cdot\sqrt[4]{x^2-1}\)
c)\(\sqrt[4]{9-x^2}+\sqrt{x^2-1}-2\sqrt{2}=\sqrt[6]{x-3}\)
a) Áp dụng bđt AM-GM có:
\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)
\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)
Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)
Vậy...
b)Đk:\(x\ge2\)
Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)
Do \(x\ge2\Rightarrow x-1>0\)
Chia cả hai vế của pt cho x-1 ta được:
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy S={2}
c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)
Thay x=3 vào pt thấy thỏa mãn
Vậy S={3}
Giải phương trình:
a)\(\left(x+2\right)\cdot\left(x+4\right)+5\cdot\left(x+2\right)\cdot\sqrt{\frac{x+4}{x+2}}=6\)
b)\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
Giải phương trình \(\sqrt{x-2+\sqrt{2\cdot x+5}}+\sqrt{x+2+3\cdot\sqrt{2\cdot x-5}}=7\cdot\sqrt{2}\)
\(\sqrt{2\cdot x^2+4\cdot x+6}\) +\(\sqrt{3\cdot x^2+6\cdot x+12}\)=5-\(2\cdot x\)-\(x^2\)
giải phương trình
\(\sqrt{4x-20}-3\cdot\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
\(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+4}\)
\(\sqrt{x+2}+\sqrt{x-1}=3x\)
\(x^2+6=4\cdot\sqrt{x^3-2x^2+3}\)
giải giúp mk nhanh nhanh nha
1.
ĐKXĐ: \(5\leq x\leq 1\) (vô lý) nên PT sai ngay từ đầu.
2.
ĐKXĐ: \(x\geq -1\)
PT \(\Leftrightarrow \sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}=\sqrt{x+4}\)
\(\Leftrightarrow 3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+4}\)
\(\Leftrightarrow 5\sqrt{x+1}=\sqrt{x+4}\)
\(\Rightarrow 25(x+1)=x+4\) (bình phương 2 vế)
\(\Leftrightarrow x=\frac{-7}{8}\) (thỏa mãn)
Vậy..........
3.
ĐKXĐ: \(x\geq 1\)
Áp dụng BĐT Cauchy:
\(\sqrt{x+2}+\sqrt{x-1}\leq \frac{(x+2)+1}{2}+\frac{(x-1)+1}{2}=x+1,5\)
Mà \(x+1,5\leq x+1,5x< 3x\) với mọi $x\geq 1$
Do đó: \(\sqrt{x+2}+\sqrt{x-1}< 3x\) với mọi $x\geq 1$. Do đó PT đã cho vô nghiệm.
4. ĐKXĐ: $x\geq 1$.
PT \(\Leftrightarrow x^2+6=4\sqrt{(x+1)(x^2-3x+3)}\)
Đặt \(\sqrt{x^2-3x+3}=a; \sqrt{x+1}=b(a,b\geq 0)\)
\(\Rightarrow a^2+3b^2=x^2+6\).
PT đã cho trở thành:
\(a^2+3b^2=4ab\)
\(\Leftrightarrow a^2+3b^2-4ab=0\)
\(\Leftrightarrow (a-3b)(a-b)=0\)\(\Rightarrow \left[\begin{matrix} a=b\\ a=3b\end{matrix}\right.\)
Với $a=b$ \(\Leftrightarrow \sqrt{x^2-3x+3}=\sqrt{x+1}\)
\(\Rightarrow x^2-3x+3=x+1\Leftrightarrow x^2-4x+2=0\)
\(\Rightarrow x=2\pm \sqrt{2}\) (thỏa mãn)
Với \(a=3b\Leftrightarrow \sqrt{x^2-3x+3}=3\sqrt{x+1}\)
\(\Rightarrow x^2-3x+3=9(x+1)\)
\(\Leftrightarrow x^2-12x-6=0\Rightarrow x=6\pm \sqrt{42}\) (thỏa mãn)
Vậy.....
giải phương trình
\(\left(3-x\right)\cdot\sqrt{\left(3+x\right)\cdot\left(9+x^2\right)}=4\sqrt{5\cdot\left(3-x\right)}\)
giải hệ phương trình :
a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)
b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)
Làm hộ mk nhé mk tick cho :))))))))))
Giải phương trình
\(3\cdot\sqrt{2x+1}-6\sqrt{x+4}+\sqrt{\left(2x+1\right)\left(x+4\right)}+7=0\)
Giải phương trình:
a)\(3\cdot\left(x^2-x+1\right)=8\cdot\left(x^3+x\right)\)
b) \(x^2+2x\cdot\sqrt{x-\frac{1}{x}}=3x+1\)
c) \(x^2+\sqrt[4]{x^4-x^2}=2x+1\)
d) \(\sqrt{x-1}+\sqrt{3-x}+4x\cdot\sqrt{2x}=x^3+10\)
e) \(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)