Tìm x,y
\(\left(x-1\right)^2+\left(y-2\right)^2=0\)
HELP ME <> SẼ TICK
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
𝓥𝓲̀ \(\left(x-13+y\right)^2\ge0;\left(x-6-y\right)^2\ge0\)
\(\Rightarrow\left(x-13+y\right)^2+\left(x-6-y\right)^2\ge0\)
𝓓𝓪̂́𝓾 𝓫𝓪̆̀𝓷𝓰 𝔁𝓪̉𝔂 𝓻𝓪 𝓴𝓱𝓲 \(\left(x-13+y\right)^2=0;\left(x-6-y\right)^2=0\)
\(\Rightarrow\left(x-13+y\right)^2=0\) \(\Rightarrow\left(x-6-y\right)^2=0\)
\(x-13+y=0\) \(x-6-y=0\)
\(x+y=13\) \(x-y=6\)
\(\Rightarrow\)𝔁 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓵𝓸̛́𝓷 𝓱𝓸̛𝓷 𝔂 𝓫𝓸̛̉𝓲 𝓿𝓲̀ 𝓴𝓱𝓲 𝔁-𝔂 𝓴𝓮̂́𝓽 𝓺𝓾𝓪̉ 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓭𝓾̛𝓸̛𝓷𝓰
\(\Rightarrow x=\left(13+6\right)\div2=9,5\)
\(\Rightarrow y=13-9,5=3,5\)
𝓥𝓪̣̂𝔂 𝔁=9,5 𝓿𝓪̀ 𝔂=3,5
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0
(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)
Vậy (\(x\);y) = (\(\dfrac{19}{2}\); \(\dfrac{7}{2}\))
\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)
Ta có :
\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài
Mog giúp đỡ :
Tìm x ; y ; z thỏa mãn :
\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left|x^2+y^2+z^2-1\right|=0\)
HELP ME !!!!
\(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4\ge0\\\left(3x-2y\right)^2\ge0\end{cases}}\Rightarrow\left|x^2+y^2+z^2-1\right|+\left(3y-4z\right)^4+\left(3x-2y\right)^2\ge0\)
dấu = xảy ra khi \(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4=0\\\left(3x-2y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\3y=4z\\3x-2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\y=\frac{4z}{3}\\x=\frac{2y}{3}\end{cases}}\)
Vậy ...
p/s bài này chắc chỉ có dạng chung thôi bn :)
Tìm x, biết:
a, \(\left(x-3\right)^2-x^2+3x=0\)
b, \(4x^2-1=\left(2x+1\right).\left(x-3\right)\)
HELP ME, PLEASE!!!
Ai nhanh nhất thì mk sẽ tick!
\(\left(x-3\right)^2-\left(x^2-3x\right)=0\)
\(\left(x-3\right).\left(x-3\right)-x.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x-3-x\right)=0\)
\(\left(x-3\right).3=0\)
\(x-3=0=>x=3\)
sorry đoạn này
\(\left(x-3\right).\left(-3\right)=0=>....\)
bn sửa lại cái dòng thứ 3 nha
P/S: Mk mới lớp 7 làm sai sót thì sorry
Tìm x,y biết:
a) \(x^2+\left(y-\frac{1}{10}\right)^4=0\)
b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
Nhanh lên ai giúp mk zới!! CTV ơi, help me!!!!
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
Tìm x, y,z biết:
a) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{y}{x+y-3}\)
b) \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{2}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
Help me ! mik hứa sẽ tk
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\left(x^{ }-y\right)^2+y^2=25\\\left(x+y\right)^2+x^2=26\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-y-xy=2+3\sqrt{2}\\x^2+y^2=6\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{matrix}\right.\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
b)Đặt $S=x+y,P=xy$ thì được:
\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)
\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)
Xét $x=0$ thì \(\left\{ \begin{align} & 2{{y}^{2}}=25 \\ & 2{{y}^{2}}=26 \\ \end{align} \right.\)(vô nghiệm)
Xét $x\ne 0$, đặt $y=kx$. Chia vế theo vế suy ra:\(27{{k}^{2}}-102k-24=0\Leftrightarrow \left[ \begin{align} & k=4 \\ & k=-\frac{2}{9} \\ \end{align} \right.\)
Từ đó giải ra 4 nghiệm\(\left( 1;4 \right),\left( -1;-4 \right),\left( \dfrac{9}{\sqrt{5}};-\dfrac{2}{\sqrt{5}} \right),\left( -\dfrac{9}{\sqrt{5}};-\dfrac{2}{\sqrt{5}} \right)\)
a) \(\left\{{}\begin{matrix}x^2+\left(3y+1\right)x+2y^2+y=0\\x^2+y^2+x+y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}xy-x+y=3\\x^2+y^2-x+y+3xy=12\end{matrix}\right.\)
help me
Tìm nguyên x,y : \(\left|3x+1\right|+\left|3x-5\right|=\frac{12}{\left(y+3\right)^2+2}\)
Mọi người ơi !! Giúp mình với :-0 Help me
Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)
\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)
\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)