Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
AnxiousHalwe
30 tháng 5 2022 lúc 17:18

Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh

Nguyễn Ngọc Quý
30 tháng 5 2022 lúc 20:55

vvv

Lưu Linh Ly
Xem chi tiết
Lê Thị Hiền Hậu
6 tháng 12 2016 lúc 22:23

lưu linh ly ơi kết bn với mk nhé

Member lỗi thời :>>...
Xem chi tiết
TRẦN HỒ HOÀNG DUY
10 tháng 10 2021 lúc 13:18

Ta có \(a_1< a_2< ...< a_9\)

              \(\Rightarrow a_1+...+a_9< 3a_3+3a_6+3a_9\)

Khi đó: \(\frac{a_1+...+a_9}{a_3+a_6+a_9}< \frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}< 3\)(1)

Chứng minh tương tư ta có \(\Rightarrow a_1+...+a_9>3a_1+3a_4+3a_7\)

Khi đó \(\frac{a_1+...+a_9}{a_1+a_4+a_7}>\frac{3\left(a_1+a_4+a_7\right)}{a_1+a_4+a_7}>3\)(2)

Từ (1) và (2) => Điều phải chứng minh.

Chúc bạn học tốt!

Khách vãng lai đã xóa
Read Madridsta
Xem chi tiết
Alexander Sky Sơn Tùng M...
18 tháng 10 2015 lúc 20:30

Bài này giống bài bình thường khác mỗi nhiều số

Dung Đặng Phương
Xem chi tiết
Thiên An
27 tháng 7 2017 lúc 21:15

giup cai? can gap! gap! gap!? | Yahoo Hỏi & Đáp

IS
19 tháng 3 2020 lúc 23:01

chứng minh = phản chứng . giả sử trong 25 số tự nhiên ko có 2 số nào bằng nhau . ko mất tính tổng quát , giả sử\(a_11,a_22,..,a_{25}25\)

thế thì

\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{25}}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{25}}\)

ta lại có \(\frac{1}{\sqrt{25}}+..+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{1}}=\frac{1}{\sqrt{25+\sqrt{25}}}+\frac{1}{\sqrt{2+\sqrt{2}}}+1\)

\(< \frac{2}{\sqrt{24+\sqrt{24}}}+.+\frac{2}{\sqrt{2+\sqrt{2}}}+1\)

\(=2\left(\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{25}-\sqrt{1}\right)+1=9\left(2\right)\)

từ (1) zà 2 suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..+\frac{1}{\sqrt{a_{25}}}< 9\)trái zới giả thiết , suy ra ko tồn tại 2 số nào = nhau trong 25 số

Khách vãng lai đã xóa
Võ Nguyễn Thương Thương
Xem chi tiết
Charlotte Grace
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 22:13

Số vecto tạo từ 2n điểm là: \(A_{2n}^2\)

Đa giác đều 2n đỉnh có n đường chéo, cứ 2 đường chéo cho ta 1 hình chữ nhật tương ứng, do đó số hình chữ nhật có đỉnh là đỉnh của đa giác đều là: \(C_n^2\)

\(\Rightarrow A_{2n}^2=9C_n^2\Leftrightarrow\dfrac{\left(2n\right)!}{\left(2n-2\right)!}=\dfrac{9.n!}{2!.\left(n-2\right)!}\)

\(\Leftrightarrow2n\left(2n-1\right)=\dfrac{9n\left(n-1\right)}{2}\)

\(\Leftrightarrow n=5\)

Shiro Suu
Xem chi tiết
Trần Đức Thắng
8 tháng 8 2015 lúc 8:43

Áp dụng dãy tỉ số bàng nhau ta có :

     \(\frac{a1+1}{9}=\frac{a2+8}{8}=...=\frac{a9+9}{1}=\frac{a1+1+a2+2+..a9+9}{1+2+3+..+9}=\frac{\left(a1+a2+..+a9\right)+1+2+..+9}{1+2+3+..+9}\)

       \(=\frac{90+45}{45}=\frac{135}{45}=3\)

=> a1+1 = 27 => a 1 = 26 

=>a2+ 2 = 24 => a2 = 22 

...............................

tương tự tìm tiếp 

ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
tu hoang anh
Xem chi tiết