Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạch mã hoàng tử
Xem chi tiết
Lê Công Độ
Xem chi tiết
hibiki
Xem chi tiết
Đinh Thùy Linh
9 tháng 7 2016 lúc 21:17

\(60!=1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot59\cdot60=1\cdot3\cdot5\cdot...\cdot57\cdot59\times2\cdot4\cdot6\cdot...\cdot58\cdot60\)

\(=1\cdot3\cdot5\cdot...\cdot57\cdot59\times2^{30}\cdot1\cdot2\cdot3\cdot...\cdot30=1\cdot3\cdot5\cdot...\cdot57\cdot59\times2^{30}\times30!\)

\(\Rightarrow1\cdot3\cdot5\cdot...\cdot59=\frac{60!}{30!\times2^{30}}=\frac{31}{2}\cdot\frac{32}{2}\cdot\frac{33}{2}\cdot...\cdot\frac{60}{2}\)đpcm.

Nguyễn Thị Ngọc Ánh
9 tháng 7 2016 lúc 21:19

\(\frac{31}{2}\cdot\frac{32}{2}\cdot...\cdot\frac{60}{2}\cdot2\cdot4\cdot...\cdot58\cdot60\)

=31.32.33.34...60.1.2.3.4.5...29.30

=1.2.3.4.5.6.7.8.9.10...60

1.3.5.7...59.2.4.6.8...60

=1.2.3.4.5.6...60

Vậy \(\frac{31}{2}\cdot\frac{32}{2}\cdot\frac{33}{2}\cdot...\cdot\frac{60}{2}=1\cdot3\cdot5\cdot...\cdot59\)

๖ۣۜBá ๖ۣۜVươηɠ
Xem chi tiết
Đàm Thị Minh Hương
22 tháng 6 2018 lúc 7:34

Ta có: \(\frac{31}{2}.\frac{32}{2}...\frac{60}{2}=\frac{31.32...60}{2^{30}}=31.33...57.59.\left(\frac{32.34...58.60}{2^{30}}\right)\)

                                                                         \(=31.33...57.59.\left(\frac{16.17...29.30}{2^{15}}\right)=17.19...27.29.31.33...57.59.\left(\frac{16.18...30}{2^{15}}\right)\)

\(=17.19...57.59.\left(\frac{8.9...15}{2^7}\right)=9.11.13.15.17...57.59.\left(\frac{8.10.12.14}{2^7}\right)\)

\(=9.11...57.59.\left(\frac{4.5.6.7}{2^3}\right)=5.7.9...57.59.\left(\frac{4.6}{2^3}\right)\)

\(=5.7.9...57.59.3=1.3.5...59\)

Lê Thị Quỳnh
Xem chi tiết
Trần Thị Loan
11 tháng 5 2015 lúc 16:39

\(1.3.5....59=\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}=\frac{\left(1.2.3.4.5...30\right).31....59.60}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32....60}{2^{30}}=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\)

Kaitoru
11 tháng 5 2015 lúc 18:29

Chị quản lý Sao làm tốt thế mà chẳng được olm công nhận nhỉ

Lê Sỹ Long Nhật
14 tháng 8 2016 lúc 20:04

Vì đó là người quản lí nên công nhận cũng có được gì !!!

Yêu Chi Pu
Xem chi tiết
Đinh Tuấn Việt
3 tháng 5 2015 lúc 14:27

Ta có: \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2.2.2...2}=\frac{31.32.33...60}{2^{30}}\)

                                                       (30 số 2)

\(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32.33...60.1.2.3...30}{\left(2.1\right).\left(2.2\right).\left(2.3\right)...\left(2.30\right)}=\frac{\left(1.3.5...59\right).\left(2.4.6...60\right)}{\left(2.4.6...60\right)}=1.3.5...59\)

Le Thi Khanh Huyen
3 tháng 5 2015 lúc 14:30

\(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2^{30}}\)

\(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}\)

\(=\frac{1.2.3...60}{2^{30}\left(1.2.3...30\right)}\)

\(=\frac{\left(1.3.5.7...59\right)\left(2.4.6.8...60\right)}{\left(2.4.6.8...60\right)}\)

\(=1.3.5.7...59\)

👁💧👄💧👁
Xem chi tiết
Natsu Dragneel
21 tháng 3 2019 lúc 22:39

Bài 1 :

\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)

\(\Leftrightarrow-2x-2-3+3x=4\)

\(\Leftrightarrow x=4+2+3=9\)

Bài 2 :

Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)

Lại có :

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)

Từ (1)(2) , ta có :

\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)

👁💧👄💧👁
21 tháng 3 2019 lúc 22:21

Nguyen Ribi Nkok Ngok Khôi Bùi nguyễn ngọc dinh Phùng Tuệ Minh Akai Haruma buithianhtho ?Amanda? Nguyễn Thành Trương Nguyễn Ngô Minh Trí

Phạm Đức Anh
21 tháng 3 2019 lúc 22:34

Bài 1 : x=9

Trương Gia Trịnh
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 5 2015 lúc 13:04

Ta có:

\(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2^{30}}\)

                                    \(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}\)

                                    \(=\frac{1.2.3...60}{2^{30}\left(1.2.3...30\right)}\)

                                    \(=\frac{\left(1.3.5.7...59\right)\left(2.4.6.8...60\right)}{\left(2.4.6.8...60\right)}\)

                                    \(=1.3.5.7...59\)

Vậy \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=1.3.5.7...59\)

Nguyễn Hữu Huy
Xem chi tiết