Cho \(S=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\) .
Chứng minh rằng \(3< 5S< 4\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
1, so sánh A;B biết: A=\(\left(\dfrac{\left(3\cdot\dfrac{2}{15}+\dfrac{1}{5}\right):2\cdot\dfrac{1}{2}}{\left(5\cdot\dfrac{3}{7}-2\cdot\dfrac{1}{4}\right):\dfrac{443}{56}}\right);B=\dfrac{1,2:\left(1\cdot\dfrac{1}{5}.1\cdot\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Bài 1: tính
Cho A= \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+........+\dfrac{1}{60}>\dfrac{7}{12}\)
B=\(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+.....+\dfrac{1}{50^2}\)
CMR B > \(\dfrac{1}{4}\); B < \(\dfrac{4}{9}\)
C = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...........\dfrac{79}{80}\)<\(\dfrac{1}{9}\)
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
Cho M = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\) ; N = \(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\).
Tính M \(\cdot\) N.
CMR 1.3.5...19=\(\dfrac{11}{2}.\dfrac{12}{2}.\dfrac{13}{2}...\dfrac{20}{2}\)
TÍNH GIÁ TRỊ BIỂU THỨC:\(\left(1+\dfrac{2}{3}\right)\cdot\left(1+\dfrac{2}{4}\right)\cdot\left(1+\dfrac{2}{5}\right)\cdot...\cdot\left(1+\dfrac{2}{97}\right)\cdot\left(1+\dfrac{2}{98}\right)\)
Tính B-C , biết B = 1.3.5. ... .99 và C = \(\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.......\dfrac{100}{2}\) . giúp mk nhanh nha