Cho hình tam giác ABC vuông cân tại A. D là trung điểm của cạnh AC. Trên BD lấy điểm E sao cho DE=DA. Tính EC phần EA = BE phần AB
Cho hình tam giác ABC vuông cân tại A. D là trung điểm của cạnh AC. Trên BD lấy điểm E sao cho DE=DA. Tính EC phần EA = BE phần AB
giúp mình nhé các bạn
Cho hình tam giác ABC vuông cân tại A. D là trung điểm của cạnh AC. Trên BD lấy điểm E sao cho DE=DA. Tính EC phần EA = BE phần AB
giúp mình nhé các bạn mình tick cho đăng 3 lần rồi
Cho hình tam giác ABC vuông cân tại A. D là trung điểm của cạnh AC. Trên BD lấy điểm E sao cho DE=DA. Tính \(\dfrac{EC}{AE}=\dfrac{BE}{AB}\)
Cho tam giác ABC vuông cân tại A có D là trung điểm của AC. Trên BD lấy điểm E sao cho \(DE=DA\). Tính \(A=\dfrac{EC}{AE}-\dfrac{BE}{AB}\)
Cho hình tam giác ABC vuông cân tại A. D là trung điểm của cạnh AC. Trên BD lấy điểm E sao cho DE=DA. Tính \(\frac{EC}{AE}=\frac{BE}{AB}\)
Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho DA = AE
a) Tứ giác BDEC là hình gì ? Vì sao ?
b) Các điểm D, E ở vị trí nào thì BD = DE = EC ?
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
bài 10 Cho tam giác ABC cân tại A . Trên cạnh BC lấy các điểm BC lấy điểm D và E sao cho : BD=DE=EC. Gọi M là trung điểm của DE . 1) chứng minh AM vuông góc BC . 2) So sánh các độ dài AB,AD,AE,AC
a) Ta có: (hai góc kề bù)
(hai góc kề bù)
mà (hai góc ở đáy của ΔABC cân tại A)
nên
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
hay (đpcm)
Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy hai điểm D,E sao cho BD=DE=EC. Qua D, E kẻ đường vuông góc với BC, Chúng cắt Ab,AC lần lượt ở K và H. Tứ giác KHED là hình gì?
Xét tứ giác KHED có KD//EH
nên KHED là hình thang