Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
wcdccedc
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 8:11

\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)

Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)

\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

 

 

 

Minh Hiếu
8 tháng 9 2021 lúc 8:10

P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)

      =(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)

áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)

=>P(x)≥64

Dấu = xảy ra khi x=-1 hoặc x=3

 

Nguyễn Quỳnh Chi
Xem chi tiết
Tuấn
7 tháng 8 2016 lúc 23:08

dễ dàng pt đc \(A=\frac{4\left(x^2+2x+5\right)^2+256}{x^2+2x+5}=4\left(x^2+2x+5\right)+\frac{256}{x^2+2x+5}\ge64\)
Dấu = xảy ra khi \(4\left(x^2+2x+5\right)=\frac{256}{x^2+2x+5}\Rightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow x=1,x=-3\)

nguyen kim chi
Xem chi tiết
Mr Lazy
15 tháng 7 2015 lúc 13:58

\(A=\frac{\left(4x^4+16x^3+16x^2\right)+\left(40x^2+80x\right)+356}{x^2+2x+5}=\frac{4.\left(x^2+2x\right)^2+40\left(x^2+2x\right)+356}{x^2+2x+5}\)

\(=\frac{4\left[\left(x^2+2x\right)^2+10\left(x^2+2x\right)+25\right]+256}{x^2+2x+5}\)\(=\frac{4\left(x^2+2x+5\right)^2+4^4}{x^2+2x+5}=4\left[\left(x^2+2x+5\right)+\frac{4^3}{x^2+2x+5}\right]\)

Áp dụng Côsi:

\(A\ge4.2\sqrt{\left(x^2+2x+5\right).\frac{4^3}{x^2+2x+5}}=64\)

Dấu "=" xảy ra khi \(x^2+2x+5=\frac{4^3}{x^2+2x+5}\Leftrightarrow\left(x^2+2x+5\right)^2=64\Leftrightarrow x^2+2x+5=8\)(do x2+2x+5 > 0)

\(\Leftrightarrow x^2+2x-3=0\Leftrightarrow x=1\text{ hoặc }x=-3\)

Vậy GTNN của A là 64.

khánh huyền
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
nguyen thi vang
12 tháng 7 2018 lúc 19:11

Tìm GTNN của biểu thức :

\(x^2+2x+4\)

Đặt A = \(x^2+2x+4\)

\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)

\(\Leftrightarrow A=\left(x+1\right)^2+3\)

Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)

Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)

Hay A\(\ge3\) với mọi x

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Nên : \(A_{min}=3khix=-1\)

Nguyễn Linh Anh
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$