1. Cho tam giác ABC có AB = AC. Chứng minh rằng hai đường cao BH, CK bằng nhau.
2.Cho tam giác ABC có trung tuyến AM bằng \(\dfrac{1}{2}\)cạnh BC. Chứng minh tam giác ABC vuông.
Bài 1 :
Cho tam giác ABC có đường trung tuyến AM = ½ BC. Chứng minh rằng tam giác ABC vuông.
Bài 2 :
Cho tam giác ABC có AB = AC. Vẽ đường phân giác AI. Chứng minh rằng :
AI vuông góc BC.BI = CI và góc ABC = ACB.Bài 3 :
Cho tam giác ABC có đường trung tuyến AM. Vẽ hai đường cao của tam giác BH và CK lần lượt là đường cao của tam giác ABM và ACM. Chứng minh rằng BH = CK.
Bài 4 :
Cho tam giác ABC có đường trung tuyến CI. Trên tia đối CI lấy điểm D sao cho ID = IC.
Chứng minh AD = BC.Lấy E thuộc AD và F thuộc BC sao cho AE = BF. Chứng minh rằng I là trung điểm của EF.Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Cho tam giác abc.Đường cao BH,CK cắt nhau tại I
1,Chứng minh AI là đường trung tuyến tam giác ABC
2,Chứng minh tam giác HIC=tam giác KIB
3,Trên BC lấy M kẻ ME vuông góc AC(E thuộc AC),kẻ MD vuông góc AB(D thuộc AB)
chứng minh ME+MD không đổi khi M thay đổi trên cạnh BC
1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .
2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.
3. Tính cạnh đáy BC của tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.
4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.
5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.
a, Chứng minh tam giác ABC vuông ở A;
b, Kẻ AH vuông góc với BC. Tính AH .
6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d.
7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :
a, A là trung điểm của DE
b, DHE=90 độ
8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA.
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Bài 3:
Vì tam giác ABC cân tại A (gt) nên AB = AC
Mà AC = AH + HC
Hay AC= 8 + 3 = 11 (cm)
Nên AB = 11 (cm)
..........
( Phần này áp dụng định lý Py-ta-go vào tam giác và làm giống như bài 2 vậy nên mình không giải lại nữa nha bạn ) ( ^ o ^ )
Bài 1 : Cho tam giác ABC có AB=AC ,gọi M là trung điểm cua cạnh BC a. Chứng minh 2 tam giác ABM&ACM bằng nhau b. Chứng minh AM vuông góc với BC
a) Xét tam giác ABM và ACM
AB=AC
^B=^C
MB=MC
=>2 tam giác = nhau(c.g.c)
b) vì tam giác ABM=ACM
=>^M1=^M2=90 độ
=>AM vuông góc với BC
Cho tam giác ABC có đường trung tuyến AM. Vẽ hai đường caocủa tam giác BH và CK lần lượt là đường cao của tam giác ABM và ACM. Chứng minh rằng BH = CK.
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Giúp mình với ạ, mik đang cần gấp
Ai giúp mik với mik đang cần gấp ạ
Cho tam giác ABC cân tại A. Phân giác AM ( M thuộc BC ). Vẽ BH vuông góc với AC ( H thuộc BC ), CK vuông góc với AB ( K thuộc AB )
a) Chứng minh rằng tam giác ANB bằng tam giác AMC.
b) Chứng minh rằng BH bằng CK.
Sửa thành chứng minh △AMB = △AMC
a, Xét △BAM và △CAM
Có: AB = AC (△ABC cân tại A)
^BAM = ^CAM (gt)
AM là cạnh chung
=> △BAM = △CAM (c.g.c)
b, Xét △ABH vuông tại H và △ACK vuông tại K
Có: AB = AC (cmt)
^BAC là góc chung
=> △ABH = △ACK (ch-gn)
=> BH = CK (2 cạnh tương ứng)