CMR tồn tại 1 bội của 2003 có dạng
20042004....2004
Giup mik vs nakkkkk..............mik can gap lm ak
CMR :tồn tại 1 bội của 2003 có dạng là 20042004...2004
Thanks cac bn nhiu
Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là ai=20042004...2004 (i lần số 2004) và aj=20042004...2004 (j lần số 2004) => ai - aj=2004..200400..000 chia hết cho 2003 ⇒ai−aj=2004..200400..000⋮2003 (i-j lần số 2004 và 4j lần số 0)
<=>20042004...2004.10^4j chia het cho 2003
Mà (104j,2003)=1(104j,2003)=1
Suy ra ta có đpcm.
Chứng minh rằng tồn tại một bội số của 2003 có dạng
2004 2004 …….2004
1) Số sau có phải số chính phương không? Vì sao ?
A= \(1992^2+1993^2+1994^2+1995^2\)
2) Chứng minh rằng tồn tại một bội của 2003 có dạng:
20042004...2004
>>> các bn jup mk zs, tks nhìu :)
Bài 2 nè
Xét 2004 số
2004
20042004
...
20042004...2004(2004 số 2004)
Theo nguyên lý Đi-rích-lê,tồn tại 2 số khi chia cho 2003 có cùng số dư.Gọi 2 số đó là m và n
Ta có:20042004...2004-20042004...2004\(⋮\)2003
(m số 2004) (n số 2004)
=>20042004...2004.104n\(⋮\)2003
(m-n số 2004)
mà 104n và 2003 nguyên tố cùng nhau
=>20042004...2004\(⋮\)2003(đpcm)
(m-n số 2004)
1,Chứng minh tồn tại bội của 2003 có tận cùng là 2006
2,chứng minh tồn tại bội của 2003 viết bởi toàn chữ số 3
CMR : tồn tại số có dạng 200320032003.....2003 chia hết cho 1991
CMR: Tồn tại số có dạng 20032003...2003 chia hết cho 1991
CMR tồn tại số chia hết cho 2003 có dạng 20022002....2002
CMR: Không tồn tại a, b thuộc Z sao cho: \(\left(a+b\sqrt{2}\right)^2=2004+2003\sqrt{2}\)
Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb
ĐKĐB ⇔\(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)
⇔\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)
⇔\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)
Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ.
Mà √22 là số vô tỉ (đây là bài toán quen thuộc)
Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.
CMR: Không tồn tại a, b thuộc Z sao cho: \(\left(a+b\sqrt{2}\right)^2=2004+2003\sqrt{2}\)
Lời giải:
Giả sử tồn tại $a,b\in\mathbb{Z}$ thỏa mãn ycđb
ĐKĐB $\Leftrightarrow a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}$
$\Leftrightarrow (a^2+2b^2-2004)=\sqrt{2}(2003-2ab)$
$\Leftrightarrow \sqrt{2}=\frac{a^2+2b^2-2004}{2003-2ab}(*)$
Với $a,b$ nguyên thì $\frac{a^2+2b^2-2004}{2003-2ab}$ là số hữu tỉ.
Mà $\sqrt{2}$ là số vô tỉ (đây là bài toán quen thuộc)
Do đó $(*)$ vô lý, hay điều giả sử là sai, tức là không tồn tại $a,b\in\mathbb{Z}$ thỏa mãn đkđb.