Cho hình thang cân ABCD. Gọi O là giao điểm của hai đường chéo; E là giao điểm của hai đường thẳng DA và CB.Chứng minh OE là đường trung trực của 2 đáy.
Cho hình thang cân ABCD (AD // BC, AD < BC). Gọi O là giao điểm của hai đường chéo. Gọi M là trung điểm của BC. Chứng minh OM vuông góc AD.
Xét ΔACD và ΔDBA có
AC=DB
AD chung
CD=BA
Do đó: ΔACD=ΔDBA
Suy ra: \(\widehat{CAD}=\widehat{BDA}\)
hay \(\widehat{OAD}=\widehat{ODA}\)
Xét ΔOAD có \(\widehat{OAD}=\widehat{ODA}\)
nên ΔOAD cân tại O
Suy ra: OD=OA
hay O nằm trên đường trung trực của DA(1)
Xét ΔABM và ΔDCM có
AB=DC
\(\widehat{ABM}=\widehat{DCM}\)
BM=CM
Do đó: ΔABM=ΔDCM
Suy ra: MA=MD
hay M nằm trên đường trung trực của AD(2)
Từ (1)và (2) suy ra OM là đường trung trực của AD
hay OM\(\perp\)AD
cho hình thang cân abcd (d=c)gọi s là giao điểm của hai đường thẳng ad và bc ,giao điểm của hai đường chéo là o .gọi m ,n lần lượt là trung điểm hai đáy ab,cd cm s,m,n,o thẳng hàng
Cho ABCD là hình thang cân (AB // CD). Gọi O là giao điểm 2 đường chéo, M là giao điểm của hai cạnh bên kéo dài. Chứng minh: MO là đường trung trực của hai đáy AB và CD.
Cho ABCD là hình thang cân (AB//CD). Gọi O là giao điểm hai đường chéo, M là giao điểm hai cạnh bên (khi kéo dài). Chứng minh MO là đường trung trực của hai đáy AB và CD.
Cau1: Cho hình thang cân ABCD có AB//CD. Gọi O là giao điểm của hai đường chéo, I là giao điểm của AD, BC. Chứng minh OI là trung trực của CD.
Câu2: Cho hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh CA là tia phân giác góc C.
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.
Cho ABCD là hình thang cân (AB//CD). Gọi O là giao điểm của hai đường chéo, M là giao điểm của hai đường cao kéo dài
Chứng minh MO là đường trung trực của hai đáy AB và CD
Bài 134. Cho hình thang cân ABCD đáy nhỏ là AB. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
a) Chứng minh tứ giác EFGH là hình thoi.
b) Gọi O là giao điểm của hai đường chéo của hình thang cân . Chứng minh E, O, G thẳng hàng.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(HE=\dfrac{BD}{2}\)
mà AC=BD
nên HE=EF
Xét tứ giác EFGH có
EF//HG
EF=HG
Do đó: EFGH là hình bình hành
mà HE=EF
nên EFGH là hình thoi
Cho hình thang cân ABCD ( AD//BC; AD < BC ). Gọi O là giao điểm của hai đường chéo. Chứng minh: OA=OD; OB=OC
( Hình tự vẽ nha bạn )
giải
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠ADC= ∠BCD (2 góc tương ứng)
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.
Cho hình thang cân ABCD gọi S là giao điểm của hai cạnh bên Ad và BC O là giao điểm của hai đường chéo AC và BD chứng minh rằng đường thẳng SO du qua trung điểm của AB và CD
Tham khảo nha
Xét tứ giác AEDO có góc A và D vuông=> AEDO nội tiếp đường tròn
=>góc AED+góc AOD=180(2 góc đối nhau) (1)
góc B chắn cung AD=> góc AOD=2*góc ABD mà tam giác ABI cân tại I nên góc ABD = góc BAC = 1/2 góc AOD=>góc ABD+BAC=AOD. Vì góc AID kề bù với góc AIB=> gócAID+góc AIB=180=AIB+ABD+BAC=AIB+AOD=>góc AID= góc AOD
từ (1)=> góc AED+góc AID=180(đpcm)
Cho ABCD là hình thang cân (AB // CD). Gọi O là giao điểm 2 đường chéo, M là giao điểm của hai cạnh bên kéo dài. Chứng minh: MO là đường trung trực của hai đáy AB và CD.