Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Thành An
Xem chi tiết
Good boy
13 tháng 1 2022 lúc 16:13

M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019

M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019

Lê Phương Mai
13 tháng 1 2022 lúc 16:17

\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)

\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)

\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)

\(M=x^2.0-y.0+0+2019\)

\(M=0-0+0+2019\)

\(M=2019\)

zero
13 tháng 1 2022 lúc 16:23

M=x3+x2y−2x2−xy−y2+3y+x+2017.

M=(x3+x2y−2x2)−(xy−y2+2y)+(x+y−2)+2019

M=x2.(x+y−2)−y.(x−y+2)+(x+y−2)+2019

M=x2.0−y.0+0+2019

Trần Việt Khoa
Xem chi tiết
Trịnh Quỳnh Anh (-_ BLIN...
Xem chi tiết
Nguyên nha hieu
Xem chi tiết
Tạ Duy Khoa
Xem chi tiết

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài

          

          

 

                        

                    

         

 

Haha haha
Xem chi tiết
Lấp La Lấp Lánh
29 tháng 10 2021 lúc 9:33

Bài 1:

a) \(8xy^2+24x^2y-32x^3y^2=8xy\left(y+3x-4x^2y\right)\)

b) \(x^2-16x-y^2+64=\left(x-8\right)^2-y^2=\left(x-8-y\right)\left(x-8+y\right)\)

Bài 2:

\(\left(x-4\right)^2-\left(12x+x^2\right)=6\)

\(\Rightarrow x^2-8x+16-12x-x^2=6\)

\(\Rightarrow20x=10\Rightarrow x=\dfrac{1}{2}\)

Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 9:34

\(1,\\ =8xy\left(y+3x-4x^2y\right)\\ =\left(x-8\right)^2-y^2=\left(x-y-8\right)\left(x+y-8\right)\)

\(2,\Leftrightarrow x^2-8x+16-12x-x^2=6\\ \Leftrightarrow-20x=-10\\ \Leftrightarrow x=2\)

Hoang Yen Pham
Xem chi tiết
Duy Nguyễn Khánh
Xem chi tiết
Akai Haruma
28 tháng 10 2023 lúc 16:40

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

Nguyễn Anh Tuấn
Xem chi tiết