Tìm giá trị bé nhất của :
1.7+\(\left|3.4-x\right|\)
\(\left|x+2.8\right|-3.5\)
1.Tìm giá trị lớn nhất của :
A = 0.5 - | x - 3.5 |
B = - |1.4 - x | - 2
2.Tìm giá trị nhỏ nhất của:
C = 1.7 + |3.4 - x|
D = | x + 2.8 | - 3.5
1.
\(A\le0,5\)
Dấu "=" xảy ra khi x-3,5 = 0
<=> x = 3,5
Vậy max A = 0,5 khi x = 3,5
\(B\le-2\)
Dấu "=" xảy ra khi 1,4 -x =0
<=> x = 1,4
Vậy max B = -2 khi x =1,4
1.
A nhỏ hơn hoặc bằng 0,5 suy ra GTLN của A là 0,5.
B sẽ nhơ hơn hoặc bằng 2 suy ra GTLN
1) Tính giá trị llớn nhất của :
A = 0.5 - | x - 3.5 |
B = - | 1.4 - x | - 2
2) tính giá trị bé nhất của :
C = 1.7 + | 3.4 - x|
D = | x+ 2.8 | - 3.5
\(1,A=0,5-\left|x-3,5\right|\)
Có \(\left|x-3,5\right|\ge0\)
\(\Rightarrow A\le0,5+0=0,5\)
Dấu "=" xảy ra khi \(\left|x-3,5\right|=0\Leftrightarrow x=3,5\)
Vậy \(A_{max}=0,5\Leftrightarrow x=3,5\)
\(B=-\left|1,4-x\right|-2\)
Có \(-\left|1,4-x\right|\le0\)
\(\Rightarrow B\le0-2=-2\)
Dấu "=" xảy ra khi \(1,4-x=0\Leftrightarrow x=1,4\)
Vậy \(B_{max}=-2\Leftrightarrow x=1,4\)
\(2,C=1,7+\left|3,4-x\right|\)
Có \(\left|3,4-x\right|\ge0\)
\(\Rightarrow C\ge1,7+0=1,7\)
Dấu "=" xảy ra khi \(3,4-x=0\Leftrightarrow x=3,4\)
Vậy \(C_{min}=1,7\Leftrightarrow x=3,4\)
\(D=\left|x+2,8\right|-3,5\)
Có \(\left|x+2,8\right|\ge0\)
\(\Rightarrow D\ge0-3,5=-3,5\)
Dấu "=" xảy ra khi \(x+2,8=0\Leftrightarrow x=-2,8\)
Vậy \(D_{min}=-3,5\Leftrightarrow x=-2,8\)
Tìm giá trị bé nhất của \(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a;b\) Ta có :
\(\left|x-2013\right|+\left|x-2015\right|=\left|2013-x\right|+\left|x-2015\right|\ge\left|2013-x+x-2015\right|=2\)
\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\ge2+\left|x-2014\right|\ge2\)có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2013-x\right)\left(x-2015\right)\ge0\\\left|x-2014\right|=0\end{cases}\Rightarrow x=2014\left(TM\right)}\)
Vậy GTNN của A là 2 tại x = 2014
áp dụng bđt về GTTĐ /x-2013/+/x-2015/=/x-2013/+/2015-x/\(\ge\)/x-2013+2015-x/=2
mà /x-2014/\(\ge0\)
nên A\(\ge2\)
dấu = xảy ra <=>x=2014
A = I x - 2013 I + I x - 2014 I + I x - 2015 I
Để A đạt giá trị nhỏ nhất thì phải có 1 giá trị bằng 0
Xét I x - 2013 I = 0
=> x = 2013
Vì 2013 bé hơn 2014 là 1 đơn vị và bé hơn 2015 là 2 đơn vị nên A = 1 + 2 = 3
Xét I x - 2014 I = 0
=> x = 2014
Vì 2014 lớn hơn 2013 là 1 đơn vị và bé hơn 2015 là 1 đơn vị nên A = 1 + 1 = 2
Xét I x - 2015 I = 0
=> x = 2015
Vì 2015 lớn hơn 2013 là 2 đơn vị và lớn hơn 2014 là 1 đơn vị nên A = 2 + 1 = 3
Vậy GTTN của A là 2
Tìm giá trị nhỏ nhất của:
C= 1.7 + / 3.4 -x/
D= / x + 2.8/ -3.5
Ai giúp mk đầu tiên tick 5 ngày, 1 ngày 3 tick ( mà pahir đúng nha)
Còn nhữg người khác thì mk sẽ tick 1 ngày thôi , 1 ngày này 1 tick thôi nhá
Cảm ơn các bn nhiều
Giá trị nhỏ nhất của C là 1.7
Giá trị nhỏ nhất của D là -3.5
các bn giải thik giúp mk nha
phải trả lời đầy đủ nhé( ko chỉ trả lời đáp án thôi đâu)
vì giá trị tuyệt đối luôn luôn lớn hơn hoặc =0 nên /3.4-x/=0
suy ra c có giá trị nhỏ nhất là =0
vì hiêu. của hai số bé nhất khi sbt bé nhất
mà / / luôn luôn lớn hơn hoặc =0
suy ra/x+2.8/=0 nên giá trị nhỏ nhất mà d có thể nhận được là -3.5
Tìm giá trị nhỏ nhất của :
G = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-2021|=|x-1|+|2021-x|\geq |x-1+2021-x|=2020$
$|x-2|+|x-2020|=|x-2|+|2020-x|\geq |x-2+2020-x|=2018$
..............
$|x-1010|+|x-1012|\geq |x-1010+1012-x|=2$
Cộng theo vế thu được:
$G\geq 2020+2018+2016+...+2+|x-1011|$
$G\geq 1021110+|x-1011|\geq 1021110$
Vậy $G_{\min}=1021110$
Giá trị này đạt tại:
\(\left\{\begin{matrix} (x-1)(2021-x)\geq 0\\ (x-2)(2020-x)\geq 0\\ .....\\ (x-1010)(1012-x)\geq 0\\ x-1011=0\end{matrix}\right.\Leftrightarrow x=1011\)
tìm giá trị nhỏ nhất của biểu thức
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$
$=a(a+2)$ (đặt $x^2-5x+4=a$)
$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$
Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$
$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$
\(\left|x+\dfrac{1}{5}\right|:\dfrac{9}{10}\)
\(\left|x-\dfrac{1}{2}\right|+\left|x+y\right|=0\)
\(\left|2x\right|-\left|3.5\right|=\left|-6.5\right|\)
\(\left|x-1.7\right|=2.3\)
a,?????
b, Với mọi giá trị của x;y ta có:
\(\left|x-\dfrac{1}{2}\right|+\left|x+y\right|\ge0\)
Để \(\left|x-\dfrac{1}{2}\right|+\left|x+y\right|=0\) thì:
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|x+y\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\\dfrac{1}{2}+y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy..........
c, \(\left|2x\right|-\left|3,5\right|=\left|-6,5\right|\)
\(\Rightarrow\left|2x\right|=6,5+3,5=10\)
\(\Rightarrow\left\{{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy..........
d, \(\left|x-1,7\right|=2,3\)
\(\Rightarrow\left\{{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy.........
Chúc bạn học tốt!!!
Tìm giá trị nhỏ nhất của biểu thức sau:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2020\right|\)
Tìm giá trị nhỏ nhất hoặc giá trị bé nhất của các biểu thức sau :
a) \(A=\left|x+\frac{1}{2}\right|-1\)
b) \(B=-\left|x+5\right|-3\)
c) \(C=\left|x+5\right|+x-3\)
d) \(D=\left|x-\frac{1}{2}\right|+\left|x-\frac{1}{3}\right|+\left|x-\frac{1}{4}\right|\)
Ai nhanh nhất mk sẽ tk nha! thank you vinamiu nha!
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a) GTTNN là -1
b) GTLN là -3
c) GTNN là -8
d) đang tìm ....
\(B=-\left|x+5\right|-3\)
tacó \(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow-\left|x+5\right|\le0\forall x\)
\(\Rightarrow-\left|x+5\right|-3\le-3\forall x\)
\(\Rightarrow B\le-3\)
\(B=-3\Leftrightarrow x+5=0\Leftrightarrow x=-5\)