cho a, b, c>=1. tìm giá trị lớn nhất của P=(1+a)(1+b)(1+c)/(abc+1)
cho a, b, c>=1. tìm giá trị lớn nhất của P=(1+a)(1+b)(1+c)/abc+1
Cho mk hỏi cái đề là \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}+1\) hay \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc+1}\) ???
cho a,b,c >0 và 1/1+a +1/1+b +1/1+c =2 tìm giá trị lớn nhất của abc
Điều kiện đã cho
\(\Leftrightarrow\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\)
\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b+c+2bc}{bc+b+c+1}\)
\(\Leftrightarrow bc+b+c+1=b+c+2bc+ab+ac+2abc\)
\(\Leftrightarrow2abc+ab+bc+ca=1\)
Mà \(ab+bc+ca\ge3\left(\sqrt[3]{abc}\right)^2\)
\(\Rightarrow2abc+3\left(\sqrt[3]{abc}\right)^2\le1\)
Đặt \(\sqrt[3]{abc}=t\left(t\ge0\right)\), khi đó \(2t^3+3t^2\le1\)
\(\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)\le0\)
Do \(\left(t+1\right)^2\ge0\) nên \(2t-1\le0\) \(\Leftrightarrow t\le\dfrac{1}{2}\) \(\Leftrightarrow abc\le\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
cho a,b,c>0 thỏa mãn
1/(1+a)+1/(1+b)+1/(1+c)=2
tìm giá trị lớn nhất của Q=abc
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
c)Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
d) Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
câu a dùng biến đổi tương đương là được
Cho ba số a,b,c thỏa mãn a lớn hơn bằng 1, b lớn hơn bằng 4 , c lớn hơn bằng 9 .tìm giá trị nhỏ nhất của biểu thức
P=(bc√(a-1)+ca√(b-4)+ab√(c-9))/abc
Cho a,b,c là các số thực dương thỏa mãn abc=1. Tìm giá trị lớn nhất của biểu thức P=1/(a+2b+3)+1/(b+2c+3)+1/(c+2a+3)
Answer:
Có \(a+2b+3\)
\(=\left(a+b\right)+\left(b+1\right)+2\ge2\sqrt{ab}+2\sqrt{b}+2\)
\(\Rightarrow\frac{1}{a+2b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{b}+1\right)}\)
\(\Leftrightarrow\frac{1}{b+2c+3}\le\frac{1}{2\left(\sqrt{bc}+\sqrt{c}+1\right)}\)\(;\frac{1}{c+2c+3}\le\frac{1}{2\left(\sqrt{ac}+\sqrt{a}+1\right)}\)
\(\Rightarrow P\le\frac{1}{2}[\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}]\)
Bởi vì abc = 1 nên \(\sqrt{abc}=1\)
\(\Rightarrow P\le\frac{1}{2}[\frac{\sqrt{c}}{1+\sqrt{bc}+\sqrt{c}}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{\sqrt{bc}}{\sqrt{bc}+\sqrt{c}+1}]\)
\(\Rightarrow P\le\frac{1\sqrt{bc}+\sqrt{c}+1}{2\sqrt{bc}+\sqrt{c}+1}\)
\(\Rightarrow P\le\frac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Cho a, b, c >= 0 thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức : P = abc (a^2 + b^2 + c^2)
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3
cho a b c là các số thực dương thỏa mãn a+b+c=1. tìm giá trị lớn nhất và nhỏ nhất của p=ab+bc+ca-abc/a+2b+c
1.cho a,b,c là các số dương thảo man: a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
Q=\(\dfrac{a\left(b+c\right)}{a+1}+\dfrac{b\left(c+a\right)}{b+1}+\dfrac{c\left(a+b\right)}{c+1}\)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
���+���+���