giải hpt \(x+\sqrt{x}+\sqrt{y+1}=1\)
và \(y+\sqrt{y}+\sqrt{y+1}=1\)
giups mik vs
\(x+\sqrt{x}+\sqrt{y+1}=1\)
\(y+\sqrt{y}+\sqrt{x+1}=1\)
giải hpt giúp mik vs
\(\hept{\begin{cases}\left(x+1\right)+\sqrt{x}+\sqrt{y+1}=2\\\left(y+1\right)+\sqrt{y}+\sqrt{x+1}=2\end{cases}}\) ĐK: \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
Lấy pt (1) - (2) Ta được
\(\left(x+1\right)-\left(y+1\right)+\sqrt{x}-\sqrt{y}+\left(\sqrt{y+1}-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)+\frac{\left(y+1\right)-\left(x+1\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y+1}+\sqrt{x+1}}\right)=0\)
\(2y^3+7y+2x.\sqrt{1-x}=3\sqrt{1-x}+3.\left(2.y^2+1\right)\)
\(\sqrt{2y^2-4y+3}=5-y+\sqrt{x+4}\)
giải hpt giúp mik vs
bài đầu tiên bằng -3
bài thứ hai mình ko biết
giải hpt(:\(3x+\sqrt{1+9x^2}\)).(y+\(\sqrt{1+y^2}\))=1
vàvà x^2+y^2-4x+8y-9=0
Giúp mik vs
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)
giải hpt: \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{x^2-y^2}\\\sqrt{x}+\sqrt{y}=1\end{cases}}\)
\(\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{\left(x-y\right)\left(x+y\right)}.\\ \left(\sqrt{x+y}-1\right)\left(\sqrt{x-y}-1\right)=0.\)
Chắc bạn cũng biết phải làm gì :))
1, Giải hpt : \(\sqrt{x}+\sqrt{6-y}=2\sqrt{3}\)
\(\sqrt{y}+\sqrt{6-x}=2\sqrt{3}\)
giải hpt:\(\sqrt{\text{x^2 + x + y + 1}+x}-x+\sqrt{\text{y^2 + x + y + 1 }}-y=2\)
\(\sqrt{\text{x^2 + x + y + 1}}-x+\sqrt{\text{y^2 + x + y + 1}-y=2}\)
giải hpt: \(\sqrt{x+1}+\sqrt{7-y}=4\)4
và \(\sqrt{y+1}+\sqrt{7-x}=4\)
ĐKXĐ \(-1\le x,y\le7\)
TA THẤY: \(\sqrt{x+1}+\sqrt{7-y}=\sqrt{y+1}+\sqrt{7-x}\)
DÙNG PHƯƠNG PHÁP ĐÁNH GIÁ :
NẾU \(x>y\) THÌ \(\hept{\begin{cases}\sqrt{x+1}>\sqrt{y+1}\\\sqrt{7-y}>\sqrt{7-x}\end{cases}}\)DO ĐÓ: \(\sqrt{x+1}+\sqrt{7-y}>\sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)
NẾU \(x< y\)THÌ \(\hept{\begin{cases}\sqrt{x+1}< \sqrt{y+1}\\\sqrt{7-y}< \sqrt{7-x}\end{cases}}\)DO ĐÓ \(\sqrt{x+1}+\sqrt{7-y}< \sqrt{y+1}+\sqrt{7-x}\)(VÔ LÍ)
VẬY \(x=y\)THAY VÀO PT(1) TA ĐƯỢC:
\(\sqrt{x+1}+\sqrt{7-x}=4\)
\(\Rightarrow x+1+7-x+2\sqrt{\left(x+1\right)\left(7-x\right)}=16\)
\(\Leftrightarrow\sqrt{-x^2+6x+7}=4\)
\(\Rightarrow-x^2+6x+7=16\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow x=3\)(THỎA MÃN ĐKXĐ)
VẬY HỆ PT CÓ NGHIỆM \(\left(x;y\right)\)LÀ \(\left(3;3\right)\)
Đánh giá không thành cong nhé bạn @Thảo Lê Thị
Bài này ta trừ pt(I) - pt(II)
Và Liên hợp .
<=> \(\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}+\frac{x-y}{\sqrt{7-y}+\sqrt{7-x}}=0.\\ \left(x-y\right)\left(...\right)=0\\ x=y.\)
Cái trong căn >0 nên không cần phải lo lắng :v
Giải hpt :
\(\left\{{}\begin{matrix}\sqrt{x^2+y}+\sqrt{3}=\sqrt{y^2-3x}+\sqrt{7}\\\sqrt{y-1}+2y^2+1=\sqrt{x}+x^2+xy+3y\end{matrix}\right.\)