Chứng minh nếu x thuộc Z thì B= x^3 -19x chia hết cho 6
Tìm x,y thuộc Z biết
a) 4x-xy+2y+3
b) 3y-xy-2x-5=0
c) 2xy-x-y=100
bài 2 cho a,b thuộc z biết
ab-ac+bc-c^2=-1
chứng minh a và b là 2 số đối nhau
bài 3. cho a,b,c thuộc Z và a+c+c=6
chứng minh a^3+b^3+c^3 chia hết cho 6
bài 4 cho x,y thuộc Z chứng minh nếu 6x+11y chia 31 thì x+7y chia hết cho 31
bài 5 chứng minh với mọi n thuộc Z thì (n-1)(n+2)+12 ko chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
a,Tìm x thuộc Z để: 8-x chia hết cho x-1
b,Cho a,b thuộc Z,chứng minh rằng nếu 3a+7b chia hết cho 4 thì 19a-b chia hết cho 4
b, Có : 3a+7b chia hết cho 4
Mà 16a và 8b đều chia hết cho 4
=> 3a+7b+16a-8b chia hết cho 4
=> 19a-b chia hết cho 4
=> ĐPCM
Tk mk nha
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
HELP ME............................
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Tìm x,y thuộc Z biết:
a) (x-2).(x.y-1)=5
b) Chứng minh rằng:
Nếu x là một số lẻ không chia hết cho 3 thì x^2 -1 chia hết cho 6
Chứng minh rằng nếu 6x +11y chia hết 31 với x,y thuộc Z thì x + 7y cùng chia hết cho 31
Tìm x thuộc Z
2 .( x -5 ) - 3 . (x-4 ) = -6 + 15 . -3
x - 14 = 3x +18
Ai làm đúng mà nhanh thì mk tick cho
2.(x-5)-3.(x-4)=-6+15.-3
\(2\left(x-5\right)-3\left(x-4\right)=-51\)
\(\left(2x-10\right)-\left(3x-12\right)=-51\)
\(2x-10-3x+12=-51\)
\(\left(2x-3x\right)+\left(-10+12\right)=-51\)
\(-x+2=-51\)
\(-x=-53\)
\(x=53\)
vậy x=53
chúc bạn học tốt like mình nha
\(x-14=3x+18\)
\(-14-18=3x-x\)
\(-32=2x\)
\(x=-16\)
vậy x= -16
like cho mình nha
Cho a, b, x, y thuộc Z. Chứng minh nếu ax-by chia hết cho x+y thì ay-bx chia hết cho x+y.
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx
= (ax + ay) - (by + bx)
= a(x + y) - b(x + y)
= (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Vì ax - by chia hết cho x + y (2)
=> Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
Cho x,y thuộc Z. Chứng minh rằng nếu 6x+11y chia hết cho 31 thì x+11y chia hết cho 31.
Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
cho x;y thuộc Z , chứng minh rằng : nếu A= 5x + y chia hết cho 19 thì B= 4x - 3y chia hết cho 19
ta có 4x - 3y = 19x - 3.(5x + y)
Vì 19x chia hết cho 19;
5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19
do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19
vì 5x+y : 19 nên
5x:19 =>x:19=>4x:19(1)
y:19 =>3y:19 (2)
từ 1 và 2 ta có
4x-3y:19
(dấu : là chia hết)