1. Một tam giác cân có độ dài một cạnh bằng 6cm và chu vi bằng 24cm. Tính độ dài 2 cạnh còn lại?
2. Cho tam giác ABC cân tại A trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho AE bằng AF. CMR: BC+EF < 2.BF
Giúp mình với
Cho tam giác ABC cân ở B, có cạnh đáy bằng 16cm, cạnh bên dài 10cm, đường cao BH=6cm. Trên cạnh đáy AC lấy điểm D, trên cạnh đáy AB lấy điểm E, sao cho AD=3,5cm và AE=5,6cm
a) Chứng minh: tam giác ABC và tam giác ADE đồng dạng ?
b) Tính độ dài DE ?
c) Tính diện tích tam giác ADE
a: AE/BC=AE/AB=5,6/16=7/20
AD/AC=3,5/10=7/20
=>AE/AB=AD/AC
=>ΔAED đồg dạng với ΔABC
b: ΔAED đồng dạng với ΔABC
=>DE/BC=AE/AB
=>DE/16=7/20
=>DE=5,6cm
Cho tam giác abc cân tại a ab=ac=20cm bc=24cm trên cạnh ab lấy điểm e sao cho ae=af=16cm trên cạnh ac lấy điểm f sao cho ae=à=16cm
a,CM ef song song với bc
b,tính độ dài ei
c, kẻ đường cao ah,bk cắt nhau tại i CM tam giác hbi đồng dạng với tam giác hac
d, tính độ dài ih,bi
cho hình tam giác abc. trên cạnh ab lấy điểm e sao cho ae bằng 1.8. trên cạnh ac lấy điểm e sao cho ae bằng 2/3 ac. nối e với d được hình tam giác ade có diện tích 2.4. tính độ dài cạnh ab, biết diện tích hình tam giác abc là 10.
Cho tam giác ABC có chu vi là 182 m , cạnh AB bằng cạnh AC, cạnh AC bằng 4/5 cạnh BC. Đường cao BH có độ dài bằng 28 m.
a) Tính độ dài các cạnh của tam giác ABC .
b) Trên cạnh AC kéo dài về phía C lấy điểm D, trên cạnh AB lấy điểm E sao cho CD=BE=12cm. Tính độ dài đường cao hạ từ đỉnh D xuống cạnh BC .
Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:
1) BD = CE
2) Tam giác GDE cân
3) Tính chu vi của tam giác ABC biết độ dài hai cạnh là 4,8cm và 10cm
1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)
AD = AE (GT)
=> AB- AE= AC- AD
=> BE = CD
XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)
CÓ : BE = CD ( CMT)
\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)
BC LÀ CẠNH CHUNG
\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)
\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)
2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)
CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)
AE = AD (GT)
CE = BD ( pa)
\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)
CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)
BE = CD ( pa)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)
\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)
3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)
CHU VI CỦA TAM GIÁC ABC LÀ:
4,8+ 4,8+ 10 = 19,6 (CM)
KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM
CHÚC BN HỌC TỐT!!!!!
1,Vì tam giác ABC cân ở A nên AB=AC. Mà AD=AE
Nên: BD=CE
2,
Cho tam giác ABC cân tại A Trên cạnh AB lấy điểm E (E khác A và B) trên cạnh AC lấy điểm F (E khác A và C) sao cho AE= AF Gọi M là trung điểm của EF Trên tia đối của tia MB lấy điểm D sao cho MD = MB Chứng minh tam giác BME bằng tam giác DMF
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Cho tam giác ABC đều cạnh 1. Lấy điểm D ngoài tam giác ABC sao cho tam giác DBC cân tại D và góc BDC bằng 120 độ. Gọi M, N lần lượt là hai điểm trên các cạnh AB và AC sao cho góc MDN bằng 60 độ. Hãy tính chu vi của tam giác AMN.
Bạn có lời giải bài này chưa?? Có gửi mk với!
Bạn có lời giải bài này chưa? Có thì gửi cho mk với!!!
Cho tam giác ABC cân tại A, Kẻ AI vuông góc với BC (I thuộc BC). a) Chứng minh IB = IC. b) Biết AB = 15 cm, BC = 18 cm. Tính độ dài AI. c) Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho AE = AF. Chứng minh EF // BC
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )
ban oi, copy co ky thuat chut nha :<
Cho hình tam giác ABC là tam giác vuông ở A , cạnh AB bằng 30cm, cạnh AC bằng 40cm, cạnh BC bằng 50cm. Trên AB lấy điểm D, trên AC lấy điểm E, sao cho BDEC là hình thang có hiểu cao bằng 6cm.
a) Tính độ dài 3 đường cao của tam giác ABC ?
b) Tính diện tích hình tam giác ADE ?
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F sao cho AE=AF. chứng minh: BC+EF< 2 BC