tìm x biết: \(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
\(\frac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\frac{3}{-2x+10\sqrt{x}-12}-\frac{1}{3\sqrt{x}-x-2}\)
tìm x biết : x.(x+2/3)-x.(x-3/4)=7/12
b)\(\sqrt{x^2}+1\)=x+2
c)\(\left(2x+1\right)^5\)=\(\left(2x+1\right)^{2019}\)
mọi người ơi câu b là giá trị tuyệt đối của x^2 -1 nha
giúp mình mình tick cho
a) \(\Leftrightarrow x^2+\dfrac{2}{3}x-x^2+\dfrac{3}{4}x=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{17}{12}x=\dfrac{7}{12}\Leftrightarrow x=\dfrac{7}{17}\)
c) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=-1\\2x+1=1\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
A=\(\frac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\frac{3}{-2x+10\sqrt{x}-12}-\frac{1}{3\sqrt{x}-x-2}\)
Rút gọn
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)
\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)
Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)
\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)
Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)
Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)
Vậy \(M=-20\sqrt{2}\)
theo bài ra
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)
\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)
\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)
\(x^3=4\sqrt{2}-3.1x\)
\(x^3=4\sqrt{2}-3x\)
\(< =>x^3+3x-4\sqrt{2}=0\)
rồi làm y tương tự rồi thế vào M là ra
Tìm TXĐ:
a) y=\(\left(1-x\right)^{\dfrac{-1}{3}}\)
b) \(y=\sqrt{\log_{0,5}\dfrac{2x+1}{x+5}-2}\)
c) \(y=\log_{10}\sqrt{x^2-x-12}\)
d) \(y=\sqrt{\log_{10}x-1+\log_{10}x+1}\)
CMR biểu thức sau ko phụ thuộc vào giá trị của x :
A=\(\frac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\frac{3}{-2x+10\sqrt{x}-12}-\frac{1}{3\sqrt{x}-x-2}\)
Chung minh bieu thuc sau ko phu thuoc vao gia tri cua x:
\(A=\dfrac{6x-\left(x+6\right)\sqrt{x}-3}{2\left(x-4\sqrt{x}+3\right)\left(2-\sqrt{x}\right)}-\dfrac{3}{-2x+10\sqrt{x}-12}-\dfrac{1}{3\sqrt{3}-x-2}\)
Tìm x biết: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Ta có: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
\(\Leftrightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=10-5+2\sqrt{6}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5+2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2\)
hay x=2
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
Tính B biết \(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
Ta có: \(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=1\)
Thay x=1 vào B, ta được:
\(B=-\sqrt{1}\cdot\left(\sqrt{1}-1\right)=0\)