Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) tam giác ABE=tam giác ADC
b) góc BMC= 120
Bài 1: Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a. Tam giác ABE bằng tam giác ADC
b. Góc BMC bằng 120
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Cho tam giác nhọn ABC . Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD , ACE. Gọi M là giao điểm của DC , BE. Chứng minh :
a, Tam giác ABE = ADC
b,Góc BMC = 120 ĐỘ
Cho tam họn ABC. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng
a, Tam giác ABE=tam giác ADC
b,Góc BMC=120 độ
ta có DAC=60+BAC b, BMC=MCE+MEC
BAE=60+BAC MCE+MEC=ACE+MCA+MEC=BMC
=>DAC=BAC MÀ ACE=AEB
SAU ĐÓ XÉT TAM GIÁC => BMC = ACE+AEB+MEC=60+60=120
Cho tam giác nhọn ABC. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. CMR:
a, Tam giác ABE = Tam giác ADC
b, Góc BMC = 120 độ
Cho tam giác nhọn ABC. Vẽ ra phía ngoài tam gíc ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng :
a) Tam giác ABE = tam giác ADC
b) góc BMC = 120 độ
cho tam giác nhọn ABC vẽ phía ngoài tam giác ABC cắt tam giác đều ABD và tam giác ACE gọi M là giao điểm của DC và BE chứng minh rêng
a) tgiac ABE=tgiac ADC
b) góc BMC=120°
Chủ thớt chuẩn bị dĩa với dụng cụ đi :v
a) Xét \(\Delta ABD\) đều
=> \(\widehat{DAB}=\widehat{ABD}=\widehat{BDA}=60^0\)
Xét \(\Delta ACE\)
=> \(\widehat{CAE}=\widehat{ECA}=\widehat{AEC}=60^0\)
Có : \(\widehat{BAC}+\widehat{DAB}=\widehat{BAC}+\widehat{CAE}\) \(\left(\widehat{CAE}=\widehat{DAB}=60^0\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Xét \(\Delta ACD\) và \(\Delta AEB\) có :
\(\widehat{DAC}=\widehat{EAB}\)
\(AC=AE\) (\(\Delta ACE\) đều)
\(AB=AD\) (\(\Delta ABD\) đều)
=> \(\Delta ACD\)= \(\Delta AEB\) (cạnh - góc - cạnh)
b) Gọi giao điểm của AC và BE là W (chỗ này thì thích gì gọi đó :))
Ta có :
\(\Delta ACD\) = \(\Delta AEB\)
=> \(\widehat{AEB}=\widehat{ACD}\)
Lại có : \(\widehat{AWE}=\widehat{MWC}\)
Theo tổng 3 góc trong tam giác có :
\(\widehat{EAW}+\widehat{AEW}+\widehat{AWE\:}=60^0+\widehat{AEW}+\widehat{AWE}\) (tam giác AEW)
\(\widehat{CMW}+\widehat{MCW}+\widehat{MWC\: }=60^0+\widehat{MCW}+\widehat{MWC}\) (tam giác MWC)
=>
Làm tiếp :
=> \(\widehat{EAW}=\widehat{CMW}=60^0\)
Mà \(\widehat{CMW}+\widehat{CMB}=180^0\)
=> \(\widehat{CMB}=120^0\)
Cho tam giác nhọn ABC. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. CMR:
Tam giác ABE bằng tam giác ADC
Góc BMC bằng 120 độ
Cho tam giác ABC nhọn . Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE . Gọi M lad giao điểm của BE và CD. Chứng minh rằng:
a) Tam giác ABE = tam giác ADC B ) Góc BMC = 120 độ
cho tam giác nhọn abc. vẽ ra phía ngoài tam guac abc các tam giác đều abd và ace. gọi m là giao điểm của dc và be. cmr
a) tam giac abe= tam giac adc
b) góc bmc=120 độ