Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Hùng Hoàng
Xem chi tiết
HT.Phong (9A5)
25 tháng 10 2023 lúc 18:38

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

Hùng Hoàng
25 tháng 10 2023 lúc 18:45

câu a) bạn viết sai đề rồi

 

Hiếu Lê Đức
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Nguyễn Ngọc Kiều Oanh
Xem chi tiết
Truc Nguyen Le Thanh
Xem chi tiết
Trịnh Thành Công
28 tháng 6 2017 lúc 12:12

Câu 1:

\(M=x^2-3x+5\)

\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)

\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

            Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

    Vậy Min M = 11/4 khi x=3/2

b)\(N=2x^2+3x\)

\(N=2\left(x^2+\frac{3}{2}x\right)\)

\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)

\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

              Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)

                       Vậy MIn N = -9/8 khi x=-3/4

c)Tự làm nha

l҉o҉n҉g҉ d҉z҉
28 tháng 6 2017 lúc 12:09

Ta có : x2 - 3x + 5 

= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)

Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)

Trịnh Thành Công
28 tháng 6 2017 lúc 12:18

Câu 2:

a)\(A=-x^2-5x+3\)

\(A=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{37}{4}\)

\(A=\frac{37}{4}-\left(x+\frac{5}{2}\right)^2\le\frac{37}{4}\)

            Dấu = xảy ra khi \(x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)

                      Vậy Max A = 37/4 khi x=-5/2

b)\(B=-2x^2+3x\)

\(B=-2\left(x^2-\frac{3}{2}x\right)\)

\(B=-2\left(x^2-2.\frac{3}{4}+\frac{9}{16}\right)+\frac{9}{8}\)

\(B=\frac{9}{8}-2\left(x-\frac{3}{4}\right)^2\le\frac{9}{8}\)

         Dấu = xảy ra khi \(x-\frac{3}{4}=0\Rightarrow x=\frac{3}{4}\)

                    Vậy Max B=9/8 khi x=3/4

gấukoala
Xem chi tiết
Edogawa Conan
20 tháng 7 2020 lúc 16:44

A = (x2 - 3x + 1)(24 + 3x - x2)

A = -(x2 - 3x + 1)(x2 - 3x -24)

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]

A = -(x2 - 3x + 1 - 12,5)2 + 156,25 

A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x

Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0

<=> (x2 - 3x + 2,25) = 3,75

<=> (x - 1,5)2 = 3,75

<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Khách vãng lai đã xóa
gấukoala
20 tháng 7 2020 lúc 17:10

thanks

Khách vãng lai đã xóa
gấukoala
20 tháng 7 2020 lúc 17:13

ak mà chỗ x2-3x-11,5 làm sao thành (x-1,5)2=3,75 phải là 13,75 mà

Khách vãng lai đã xóa
Trần Khánh Châu
Xem chi tiết
Nguyễn Việt Hoàng
22 tháng 10 2019 lúc 23:09

\(A=\frac{3x+1}{2x^2-x+3}\)

\(A=\frac{2x^2-x+3-2x^2+4x-2}{2x^2-x+3}\)

\(A=\frac{\left(2x^2-x+3\right)-2\left(x^2-2x+1\right)}{2x^3-x+3}\)

\(A=1-\frac{2\left(x-1\right)^2}{2x^2-x+3}\)

\(A=1-\frac{2\left(x-1\right)^2}{2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{23}{8}}\)

\(A=1-\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\le1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-\frac{1}{4}\right)^2\ge0\forall x\end{cases}\Rightarrow\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge0\forall x}\)

Dấu '' = '' xảy ra khi x = 1 

Vậy Max A =1 khi x = 1 .

Khách vãng lai đã xóa
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 21:28

\(3=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}\Leftrightarrow x+y+1=3xy\)

\(\Leftrightarrow y\left(3x-1\right)=x+1\Leftrightarrow y=\dfrac{x+1}{3x-1}\)

\(\left(3x^2+1\right)\left(3+1\right)\ge\left(3x+1\right)^2\Rightarrow\sqrt{3x^2+1}\ge\dfrac{1}{2}\left(3x+1\right)\)

\(\Rightarrow\dfrac{2}{\sqrt{3x^2+1}}\le\dfrac{4}{3x+1}\)

\(\Rightarrow A\le\dfrac{4}{3x+1}+\dfrac{4}{3y+1}=\dfrac{4}{3x+1}+\dfrac{2\left(3x-1\right)}{3x+1}=\dfrac{6x+2}{3x+1}=2\)

\(A_{min}=2\) khi \(x=y=1\)

thao nguyen
Xem chi tiết
Sakura Riki Hime
1 tháng 1 2016 lúc 23:16

1/ 0, 71

2/ Tương tự 2 câu 1, 3 nhé!

3/ 11,25

Tick đúng nha! Thanks!

trần ngọc trường
Xem chi tiết
Nguyễn  Thuỳ Trang
23 tháng 11 2015 lúc 16:12

dài quá bạn ơi viết từng câu thôi